These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 37665455)
21. Horizontal Cell Biology: Monitoring Global Changes of Protein Interaction States with the Proteome-Wide Cellular Thermal Shift Assay (CETSA). Dai L; Prabhu N; Yu LY; Bacanu S; Ramos AD; Nordlund P Annu Rev Biochem; 2019 Jun; 88():383-408. PubMed ID: 30939043 [TBL] [Abstract][Full Text] [Related]
22. Thermal proteome profiling: unbiased assessment of protein state through heat-induced stability changes. Mateus A; Määttä TA; Savitski MM Proteome Sci; 2016; 15():13. PubMed ID: 28652855 [TBL] [Abstract][Full Text] [Related]
23. Thermal proteome profiling allows quantitative assessment of interactions between tetrachloroethene reductive dehalogenase and trichloroethene. Türkowsky D; Lohmann P; Mühlenbrink M; Schubert T; Adrian L; Goris T; Jehmlich N; von Bergen M J Proteomics; 2019 Feb; 192():10-17. PubMed ID: 29879467 [TBL] [Abstract][Full Text] [Related]
24. Obtaining Functional Proteomics Insights From Thermal Proteome Profiling Through Optimized Melt Shift Calculation and Statistical Analysis With InflectSSP. McCracken NA; Liu H; Runnebohm AM; Wijeratne HRS; Wijeratne AB; Staschke KA; Mosley AL Mol Cell Proteomics; 2023 Sep; 22(9):100630. PubMed ID: 37562535 [TBL] [Abstract][Full Text] [Related]
25. Identifying drug targets in tissues and whole blood with thermal-shift profiling. Perrin J; Werner T; Kurzawa N; Rutkowska A; Childs DD; Kalxdorf M; Poeckel D; Stonehouse E; Strohmer K; Heller B; Thomson DW; Krause J; Becher I; Eberl HC; Vappiani J; Sevin DC; Rau CE; Franken H; Huber W; Faelth-Savitski M; Savitski MM; Bantscheff M; Bergamini G Nat Biotechnol; 2020 Mar; 38(3):303-308. PubMed ID: 31959954 [TBL] [Abstract][Full Text] [Related]
26. GPMelt: A hierarchical Gaussian process framework to explore the dark meltome of thermal proteome profiling experiments. Le Sueur C; Rattray M; Savitski M PLoS Comput Biol; 2024 Sep; 20(9):e1011632. PubMed ID: 39331673 [TBL] [Abstract][Full Text] [Related]
27. Target deconvolution with matrix-augmented pooling strategy reveals cell-specific drug-protein interactions. Ji H; Lu X; Zhao S; Wang Q; Liao B; Bauer LG; Huber KVM; Luo R; Tian R; Tan CSH Cell Chem Biol; 2023 Nov; 30(11):1478-1487.e7. PubMed ID: 37652024 [TBL] [Abstract][Full Text] [Related]
28. The thermal proteome stability profile of Trypanosoma cruzi in epimastigote and trypomastigote life stages. Coutinho JVP; Rosa-Fernandes L; Mule SN; de Oliveira GS; Manchola NC; Santiago VF; Colli W; Wrenger C; Alves MJM; Palmisano G J Proteomics; 2021 Sep; 248():104339. PubMed ID: 34352427 [TBL] [Abstract][Full Text] [Related]
29. Precipitate-Supported Thermal Proteome Profiling Coupled with Deep Learning for Comprehensive Screening of Drug Target Proteins. Ruan C; Ning W; Liu Z; Zhang X; Fang Z; Li Y; Dang Y; Xue Y; Ye M ACS Chem Biol; 2022 Jan; 17(1):252-262. PubMed ID: 34989232 [TBL] [Abstract][Full Text] [Related]
30. A Comparison of Two Stability Proteomics Methods for Drug Target Identification in OnePot 2D Format. Xu Y; West GM; Abdelmessih M; Troutman MD; Everley RA ACS Chem Biol; 2021 Aug; 16(8):1445-1455. PubMed ID: 34374519 [TBL] [Abstract][Full Text] [Related]
31. A Tale of Two Tails: Efficient Profiling of Protein Degraders by Specific Functional and Target Engagement Readouts. Chernobrovkin AL; Cázares-Körner C; Friman T; Caballero IM; Amadio D; Martinez Molina D SLAS Discov; 2021 Apr; 26(4):534-546. PubMed ID: 33445986 [TBL] [Abstract][Full Text] [Related]
32. Nonparametric Analysis of Thermal Proteome Profiles Reveals Novel Drug-binding Proteins. Childs D; Bach K; Franken H; Anders S; Kurzawa N; Bantscheff M; Savitski MM; Huber W Mol Cell Proteomics; 2019 Dec; 18(12):2506-2515. PubMed ID: 31582558 [TBL] [Abstract][Full Text] [Related]
33. Proteome Integral Solubility Alteration (PISA) Assay in Mammalian Cells for Deep, High-Confidence, and High-Throughput Target Deconvolution. Zhang X; Lytovchenko O; Lundström SL; Zubarev RA; Gaetani M Bio Protoc; 2022 Nov; 12(22):. PubMed ID: 36532690 [TBL] [Abstract][Full Text] [Related]
34. Label-free target protein characterization for small molecule drugs: recent advances in methods and applications. Feng F; Zhang W; Chai Y; Guo D; Chen X J Pharm Biomed Anal; 2023 Jan; 223():115107. PubMed ID: 36334421 [TBL] [Abstract][Full Text] [Related]
35. STPP-UP: An alternative method for drug target identification using protein thermal stability. Zijlmans DW; Hernández-Quiles M; Jansen PWTC; Becher I; Stein F; Savitski MM; Vermeulen M J Biol Chem; 2023 Nov; 299(11):105279. PubMed ID: 37742922 [TBL] [Abstract][Full Text] [Related]
36. Two-dimensional electrophoresis-cellular thermal shift assay (2DE-CETSA) for target identification of bioactive compounds. Muroi M; Osada H Methods Enzymol; 2022; 675():425-437. PubMed ID: 36220280 [TBL] [Abstract][Full Text] [Related]
37. The Introduction of Detergents in Thermal Proteome Profiling Requires Lowering the Applied Temperatures for Efficient Target Protein Identification. Ye Y; Li K; Ma Y; Zhang X; Li Y; Yu T; Wang Y; Ye M Molecules; 2023 Jun; 28(12):. PubMed ID: 37375414 [TBL] [Abstract][Full Text] [Related]
38. Thermal Proteome Profiling and Meltome Analysis of a Thermophilic Bacterial Strain, Oztug M; Kilinc E; Akgoz M; Karaguler NG OMICS; 2020 Dec; 24(12):756-765. PubMed ID: 33085568 [TBL] [Abstract][Full Text] [Related]
39. High-throughput drug target discovery using a fully automated proteomics sample preparation platform. Wu Q; Zheng J; Sui X; Fu C; Cui X; Liao B; Ji H; Luo Y; He A; Lu X; Xue X; Tan CSH; Tian R Chem Sci; 2024 Feb; 15(8):2833-2847. PubMed ID: 38404368 [TBL] [Abstract][Full Text] [Related]
40. ProSAP: a GUI software tool for statistical analysis and assessment of thermal stability data. Ji H; Lu X; Zheng Z; Sun S; Tan CSH Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35246677 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]