These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 37665477)

  • 1. Reducing kidney uptake of radiolabelled exendin-4 using variants of the renally cleavable linker MVK.
    Trachsel B; Valpreda G; Lutz A; Schibli R; Mu L; Béhé M
    EJNMMI Radiopharm Chem; 2023 Sep; 8(1):21. PubMed ID: 37665477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the Theranostic Potential of Exendin 4 by Reducing the Renal Radioactivity through Brush Border Membrane Enzyme-Mediated Degradation.
    Zhang M; Jacobson O; Kiesewetter DO; Ma Y; Wang Z; Lang L; Tang L; Kang F; Deng H; Yang W; Niu G; Wang J; Chen X
    Bioconjug Chem; 2019 Jun; 30(6):1745-1753. PubMed ID: 31181890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual MVK cleavable linkers effectively reduce renal retention of
    Valpreda G; Trachsel B; Vogel V; Schibli R; Mu L; Behe M
    Bioorg Med Chem; 2022 Nov; 73():117040. PubMed ID: 36202066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Radiolabeled Exendin Analogues Show Reduced Renal Retention.
    Joosten L; Frielink C; Jansen TJP; Lobeek D; Andreae F; Konijnenberg M; Heskamp S; Gotthardt M; Brom M
    Mol Pharm; 2023 Jul; 20(7):3519-3528. PubMed ID: 37265006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Met-Val-Lys as a Renal Brush Border Enzyme-Cleavable Linker to Reduce Kidney Uptake of
    Bendre S; Zhang Z; Kuo HT; Rousseau J; Zhang C; Merkens H; Roxin Á; Bénard F; Lin KS
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32854201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of ¹¹¹in-labelled exendin-4 derivatives containing different meprin β-specific cleavable linkers.
    Jodal A; Pape F; Becker-Pauly C; Maas O; Schibli R; Béhé M
    PLoS One; 2015; 10(4):e0123443. PubMed ID: 25855967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of Enzymolysis Clearance Strategy To Enhance Renal Clearance of Radioligands.
    Zhang M; Ye J; Xie Z; Yan Y; Wang J; Chen X
    Bioconjug Chem; 2021 Sep; 32(9):2108-2116. PubMed ID: 34486879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an
    Iikuni S; Kamei I; Ohara T; Watanabe H; Ono M
    Mol Pharm; 2022 Mar; 19(3):1019-1027. PubMed ID: 35138111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exendin-4 Derivatives with an Albumin-Binding Moiety Show Decreased Renal Retention and Improved GLP-1 Receptor Targeting.
    Kaeppeli SAM; Jodal A; Gotthardt M; Schibli R; Béhé M
    Mol Pharm; 2019 Sep; 16(9):3760-3769. PubMed ID: 31393738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined Probe Strategy to Increase the Enzymatic Digestion Rate and Accelerate the Renal Radioactivity Clearance of Peptide Radiotracers.
    Zhang M; Ye J; Xie Z; Wang Y; Ma W; Kang F; Yang W; Wang J; Chen X
    Mol Pharm; 2022 May; 19(5):1548-1556. PubMed ID: 35357154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brush border enzyme-cleavable linkers: Evaluation for reducing renal uptake of radiolabeled prostate-specific membrane antigen inhibitors.
    Vaidyanathan G; Kang CM; McDougald D; Minn I; Brummet M; Pomper MG; Zalutsky MR
    Nucl Med Biol; 2018; 62-63():18-30. PubMed ID: 29803076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [
    Zhang P; Zhao Z; Zhang L; Wu W; Xu Y; Pan D; Wang F; Yang M
    Nucl Med Biol; 2019; 74-75():19-24. PubMed ID: 31450071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 68Ga-labelled exendin-3, a new agent for the detection of insulinomas with PET.
    Brom M; Oyen WJ; Joosten L; Gotthardt M; Boerman OC
    Eur J Nucl Med Mol Imaging; 2010 Jul; 37(7):1345-55. PubMed ID: 20111963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The major determinant of exendin-4/glucagon-like peptide 1 differential affinity at the rat glucagon-like peptide 1 receptor N-terminal domain is a hydrogen bond from SER-32 of exendin-4.
    Mann RJ; Nasr NE; Sinfield JK; Paci E; Donnelly D
    Br J Pharmacol; 2010 Aug; 160(8):1973-84. PubMed ID: 20649595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of
    Kimura H; Matsuda H; Ogawa Y; Fujimoto H; Toyoda K; Fujita N; Arimitsu K; Hamamatsu K; Yagi Y; Ono M; Inagaki N; Saji H
    Bioorg Med Chem; 2017 Feb; 25(4):1406-1412. PubMed ID: 28089587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of 68Ga- and 89Zr-Labeled Exendin-4 as Potential Radiotracers for the Imaging of Insulinomas by PET.
    Bauman A; Valverde IE; Fischer CA; Vomstein S; Mindt TL
    J Nucl Med; 2015 Oct; 56(10):1569-74. PubMed ID: 26251418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiolabelled GLP-1 analogues for in vivo targeting of insulinomas.
    Brom M; Joosten L; Oyen WJ; Gotthardt M; Boerman OC
    Contrast Media Mol Imaging; 2012; 7(2):160-6. PubMed ID: 22434628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiosynthesis and evaluation of an
    Dialer LO; Jodal A; Schibli R; Ametamey SM; Béhé M
    EJNMMI Radiopharm Chem; 2018; 3(1):1. PubMed ID: 29503858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insulinoma imaging with glucagon-like peptide-1 receptor targeting probe (18)F-FBEM-Cys (39)-exendin-4.
    Xu Y; Pan D; Xu Q; Zhu C; Wang L; Chen F; Yang R; Luo S; Yang M
    J Cancer Res Clin Oncol; 2014 Sep; 140(9):1479-88. PubMed ID: 24838847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-Activity Relationships and Pharmacokinetics of
    Iikuni S; Ohara T; Watanabe H; Ono M
    Mol Pharm; 2022 Aug; 19(8):2832-2839. PubMed ID: 35757958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.