BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 37665573)

  • 21. Europium (III) as a Circularly Polarized Luminescence Probe of DNA Structure.
    Wu T; Bouř P; Andrushchenko V
    Sci Rep; 2019 Jan; 9(1):1068. PubMed ID: 30705327
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Raman optical activity of a cyclic dipeptide analyzed by quantum chemical calculations combined with molecular dynamics simulations.
    Urago H; Suga T; Hirata T; Kodama H; Unno M
    J Phys Chem B; 2014 Jun; 118(24):6767-74. PubMed ID: 24873951
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vibrational Raman optical activity of proteins, nucleic acids, and viruses.
    Blanch EW; Hecht L; Barron LD
    Methods; 2003 Feb; 29(2):196-209. PubMed ID: 12606225
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determining the absolute configuration of two marine compounds using vibrational chiroptical spectroscopy.
    Hopmann KH; Šebestík J; Novotná J; Stensen W; Urbanová M; Svenson J; Svendsen JS; Bouř P; Ruud K
    J Org Chem; 2012 Jan; 77(2):858-69. PubMed ID: 22148737
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solution structure and dynamics of biomolecules from Raman optical activity.
    Barron LD; Hecht L; Blanch EW; Bell AF
    Prog Biophys Mol Biol; 2000; 73(1):1-49. PubMed ID: 10781828
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Beyond Chiral Organic (p-Block) Chromophores for Circularly Polarized Luminescence: The Success of d-Block and f-Block Chiral Complexes.
    Doistau B; Jiménez JR; Piguet C
    Front Chem; 2020; 8():555. PubMed ID: 32850617
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Raman Optical Activity (ROA) as a New Tool to Elucidate the Helical Structure of Poly(phenylacetylene)s.
    Palomo L; Rodríguez R; Medina S; Quiñoá E; Casado J; Freire F; Ramírez FJ
    Angew Chem Int Ed Engl; 2020 Jun; 59(23):9080-9087. PubMed ID: 32125060
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Study on Asymmetric Vibrational Coherent Magnetic Transitions and Origin of Fluorescence in Symmetric Structures.
    Sun L; Li N; Ma J; Wang J
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764420
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transfer and Amplification of Chirality Within the "Ring of Fire" Observed in Resonance Raman Optical Activity Experiments.
    Li G; Kessler J; Cheramy J; Wu T; Poopari MR; Bouř P; Xu Y
    Angew Chem Int Ed Engl; 2019 Nov; 58(46):16495-16498. PubMed ID: 31460686
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Organization of Carotenoid Aggregates in Membranes Studied Selectively using Resonance Raman Optical Activity.
    Hachlica N; Stefańska M; Mach M; Kowalska M; Wydro P; Domagała A; Kessler J; Zając G; Kaczor A
    Small; 2024 Jun; 20(26):e2306707. PubMed ID: 38247201
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aggregation-Induced Resonance Raman Optical Activity (AIRROA): A New Mechanism for Chirality Enhancement.
    Zajac G; Kaczor A; Pallares Zazo A; Mlynarski J; Dudek M; Baranska M
    J Phys Chem B; 2016 May; 120(17):4028-33. PubMed ID: 27057926
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Raman and ROA analyses of twisted anthracenes: connecting vibrational and electronic/photonic structures.
    Palomo L; Gordillo Gámez F; Bedi A; Gidron O; Casado J; Ramírez FJ
    Phys Chem Chem Phys; 2021 Jun; 23(25):13996-14003. PubMed ID: 34151326
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneous resonance Raman optical activity involving two electronic states.
    Merten C; Li H; Nafie LA
    J Phys Chem A; 2012 Jul; 116(27):7329-36. PubMed ID: 22662763
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of human blood plasma and hen egg white by chiroptical spectroscopic methods (ECD, VCD, ROA).
    Synytsya A; Judexová M; Hrubý T; Tatarkovič M; Miškovičová M; Petruželka L; Setnička V
    Anal Bioanal Chem; 2013 Jun; 405(16):5441-53. PubMed ID: 23657444
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combination of Resonance and Non-Resonance Chiral Raman Scattering in a Cobalt(III) Complex.
    Yang Q; Bloino J; Šestáková H; Šebestík J; Kessler J; Hudecová J; Kapitán J; Bouř P
    Angew Chem Int Ed Engl; 2023 Nov; 62(45):e202312521. PubMed ID: 37728178
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Theoretical study of the Raman optical activity spectra of
    Abella L; Ludowieg HD; Autschbach J
    Chirality; 2020 Jun; 32(6):741-752. PubMed ID: 32166815
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chirogenesis and Pfeiffer Effect in Optically Inactive Eu
    Fujiki M; Wang L; Ogata N; Asanoma F; Okubo A; Okazaki S; Kamite H; Jalilah AJ
    Front Chem; 2020; 8():685. PubMed ID: 32903703
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chiral sensing of amino acids and proteins chelating with Eu(III) complexes by Raman optical activity spectroscopy.
    Wu T; Kessler J; Bouř P
    Phys Chem Chem Phys; 2016 Sep; 18(34):23803-11. PubMed ID: 27523964
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental Detection of the Intrinsic Difference in Raman Optical Activity of a Photoreceptor Protein under Preresonance and Resonance Conditions.
    Haraguchi S; Hara M; Shingae T; Kumauchi M; Hoff WD; Unno M
    Angew Chem Int Ed Engl; 2015 Sep; 54(39):11555-8. PubMed ID: 26216505
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Resolving Resonant Electronic States in Chiral Metal Complexes by Raman Optical Activity Spectroscopy.
    Wu T; Kapitán J; Bouř P
    J Phys Chem Lett; 2022 May; 13(17):3873-3877. PubMed ID: 35467874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.