These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 37665783)
1. A study of Bayesian deep network uncertainty and its application to synthetic CT generation for MR-only radiotherapy treatment planning. Law MW; Tse MY; Ho LC; Lau KK; Wong OL; Yuan J; Cheung KY; Yu SK Med Phys; 2024 Feb; 51(2):1244-1262. PubMed ID: 37665783 [TBL] [Abstract][Full Text] [Related]
2. Dosimetric evaluation of an atlas-based synthetic CT generation approach for MR-only radiotherapy of pelvis anatomy. Farjam R; Tyagi N; Deasy JO; Hunt MA J Appl Clin Med Phys; 2019 Jan; 20(1):101-109. PubMed ID: 30474353 [TBL] [Abstract][Full Text] [Related]
3. Generation of abdominal synthetic CTs from 0.35T MR images using generative adversarial networks for MR-only liver radiotherapy. Fu J; Singhrao K; Cao M; Yu V; Santhanam AP; Yang Y; Guo M; Raldow AC; Ruan D; Lewis JH Biomed Phys Eng Express; 2020 Jan; 6(1):015033. PubMed ID: 33438621 [TBL] [Abstract][Full Text] [Related]
4. Compensation cycle consistent generative adversarial networks (Comp-GAN) for synthetic CT generation from MR scans with truncated anatomy. Zhao Y; Wang H; Yu C; Court LE; Wang X; Wang Q; Pan T; Ding Y; Phan J; Yang J Med Phys; 2023 Jul; 50(7):4399-4414. PubMed ID: 36698291 [TBL] [Abstract][Full Text] [Related]
5. MR-based synthetic CT generation using a deep convolutional neural network method. Han X Med Phys; 2017 Apr; 44(4):1408-1419. PubMed ID: 28192624 [TBL] [Abstract][Full Text] [Related]
6. Dosimetric evaluation of synthetic CT for head and neck radiotherapy generated by a patch-based three-dimensional convolutional neural network. Dinkla AM; Florkow MC; Maspero M; Savenije MHF; Zijlstra F; Doornaert PAH; van Stralen M; Philippens MEP; van den Berg CAT; Seevinck PR Med Phys; 2019 Sep; 46(9):4095-4104. PubMed ID: 31206701 [TBL] [Abstract][Full Text] [Related]
7. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging. Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353 [TBL] [Abstract][Full Text] [Related]
8. Patch-based generative adversarial neural network models for head and neck MR-only planning. Klages P; Benslimane I; Riyahi S; Jiang J; Hunt M; Deasy JO; Veeraraghavan H; Tyagi N Med Phys; 2020 Feb; 47(2):626-642. PubMed ID: 31733164 [TBL] [Abstract][Full Text] [Related]
9. Synthetic CT reconstruction using a deep spatial pyramid convolutional framework for MR-only breast radiotherapy. Olberg S; Zhang H; Kennedy WR; Chun J; Rodriguez V; Zoberi I; Thomas MA; Kim JS; Mutic S; Green OL; Park JC Med Phys; 2019 Sep; 46(9):4135-4147. PubMed ID: 31309586 [TBL] [Abstract][Full Text] [Related]
10. MR-based synthetic CT image for intensity-modulated proton treatment planning of nasopharyngeal carcinoma patients. Chen S; Peng Y; Qin A; Liu Y; Zhao C; Deng X; Deraniyagala R; Stevens C; Ding X Acta Oncol; 2022 Nov; 61(11):1417-1424. PubMed ID: 36305424 [TBL] [Abstract][Full Text] [Related]
11. Generating synthetic CT from low-dose cone-beam CT by using generative adversarial networks for adaptive radiotherapy. Gao L; Xie K; Wu X; Lu Z; Li C; Sun J; Lin T; Sui J; Ni X Radiat Oncol; 2021 Oct; 16(1):202. PubMed ID: 34649572 [TBL] [Abstract][Full Text] [Related]
12. Clinical feasibility of deep learning-based synthetic CT images from T2-weighted MR images for cervical cancer patients compared to MRCAT. Kim H; Yoo SK; Kim JS; Kim YT; Lee JW; Kim C; Hong CS; Lee H; Han MC; Kim DW; Kim SY; Kim TM; Kim WH; Kong J; Kim YB Sci Rep; 2024 Apr; 14(1):8504. PubMed ID: 38605094 [TBL] [Abstract][Full Text] [Related]
13. Evaluating the Hounsfield unit assignment and dose differences between CT-based standard and deep learning-based synthetic CT images for MRI-only radiation therapy of the head and neck. Singhrao K; Dugan CL; Calvin C; Pelayo L; Yom SS; Chan JW; Scholey JE; Singer L J Appl Clin Med Phys; 2024 Jan; 25(1):e14239. PubMed ID: 38128040 [TBL] [Abstract][Full Text] [Related]
14. MR to CT synthesis with multicenter data in the pelvic area using a conditional generative adversarial network. Brou Boni KND; Klein J; Vanquin L; Wagner A; Lacornerie T; Pasquier D; Reynaert N Phys Med Biol; 2020 Apr; 65(7):075002. PubMed ID: 32053808 [TBL] [Abstract][Full Text] [Related]
15. MRI-only brain radiotherapy: Assessing the dosimetric accuracy of synthetic CT images generated using a deep learning approach. Kazemifar S; McGuire S; Timmerman R; Wardak Z; Nguyen D; Park Y; Jiang S; Owrangi A Radiother Oncol; 2019 Jul; 136():56-63. PubMed ID: 31015130 [TBL] [Abstract][Full Text] [Related]
16. MRI-based treatment planning for liver stereotactic body radiotherapy: validation of a deep learning-based synthetic CT generation method. Liu Y; Lei Y; Wang T; Kayode O; Tian S; Liu T; Patel P; Curran WJ; Ren L; Yang X Br J Radiol; 2019 Aug; 92(1100):20190067. PubMed ID: 31192695 [TBL] [Abstract][Full Text] [Related]
17. Technical Note: U-net-generated synthetic CT images for magnetic resonance imaging-only prostate intensity-modulated radiation therapy treatment planning. Chen S; Qin A; Zhou D; Yan D Med Phys; 2018 Dec; 45(12):5659-5665. PubMed ID: 30341917 [TBL] [Abstract][Full Text] [Related]
19. MRI-based treatment planning for proton radiotherapy: dosimetric validation of a deep learning-based liver synthetic CT generation method. Liu Y; Lei Y; Wang Y; Wang T; Ren L; Lin L; McDonald M; Curran WJ; Liu T; Zhou J; Yang X Phys Med Biol; 2019 Jul; 64(14):145015. PubMed ID: 31146267 [TBL] [Abstract][Full Text] [Related]
20. Dose evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis MR-only radiotherapy. Maspero M; Savenije MHF; Dinkla AM; Seevinck PR; Intven MPW; Jurgenliemk-Schulz IM; Kerkmeijer LGW; van den Berg CAT Phys Med Biol; 2018 Sep; 63(18):185001. PubMed ID: 30109989 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]