These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37665786)

  • 1. Annihilation-Net: Learned annihilation relation for dynamic MR imaging.
    Cao C; Cui ZX; Zhu Q; Liu C; Liang D; Zhu Y
    Med Phys; 2024 Mar; 51(3):1883-1898. PubMed ID: 37665786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep low-Rank plus sparse network for dynamic MR imaging.
    Huang W; Ke Z; Cui ZX; Cheng J; Qiu Z; Jia S; Ying L; Zhu Y; Liang D
    Med Image Anal; 2021 Oct; 73():102190. PubMed ID: 34340107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep supervised dictionary learning by algorithm unrolling-Application to fast 2D dynamic MR image reconstruction.
    Kofler A; Pali MC; Schaeffter T; Kolbitsch C
    Med Phys; 2023 May; 50(5):2939-2960. PubMed ID: 36565150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learned Low-Rank Priors in Dynamic MR Imaging.
    Ke Z; Huang W; Cui ZX; Cheng J; Jia S; Wang H; Liu X; Zheng H; Ying L; Zhu Y; Liang D
    IEEE Trans Med Imaging; 2021 Dec; 40(12):3698-3710. PubMed ID: 34252024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compressed sensing based dynamic MR image reconstruction by using 3D-total generalized variation and tensor decomposition: k-t TGV-TD.
    Zhang J; Han L; Sun J; Wang Z; Xu W; Chu Y; Xia L; Jiang M
    BMC Med Imaging; 2022 May; 22(1):101. PubMed ID: 35624425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HFIST-Net: High-throughput fast iterative shrinkage thresholding network for accelerating MR image reconstruction.
    Geng C; Jiang M; Fang X; Li Y; Jin G; Chen A; Liu F
    Comput Methods Programs Biomed; 2023 Apr; 232():107440. PubMed ID: 36881983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cascade of preconditioned conjugate gradient networks for accelerated magnetic resonance imaging.
    Kim M; Chung W
    Comput Methods Programs Biomed; 2022 Oct; 225():107090. PubMed ID: 36067702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep compressed sensing MRI via a gradient-enhanced fusion model.
    Dai Y; Wang C; Wang H
    Med Phys; 2023 Mar; 50(3):1390-1405. PubMed ID: 36695158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. k -Space Deep Learning for Accelerated MRI.
    Han Y; Sunwoo L; Ye JC
    IEEE Trans Med Imaging; 2020 Feb; 39(2):377-386. PubMed ID: 31283473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complementary time-frequency domain networks for dynamic parallel MR image reconstruction.
    Qin C; Duan J; Hammernik K; Schlemper J; Küstner T; Botnar R; Prieto C; Price AN; Hajnal JV; Rueckert D
    Magn Reson Med; 2021 Dec; 86(6):3274-3291. PubMed ID: 34254355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ground-truth-free deep learning for artefacts reduction in 2D radial cardiac cine MRI using a synthetically generated dataset.
    Chen D; Schaeffter T; Kolbitsch C; Kofler A
    Phys Med Biol; 2021 Apr; 66(9):. PubMed ID: 33770783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An end-to-end-trainable iterative network architecture for accelerated radial multi-coil 2D cine MR image reconstruction.
    Kofler A; Haltmeier M; Schaeffter T; Kolbitsch C
    Med Phys; 2021 May; 48(5):2412-2425. PubMed ID: 33651398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Convolutional Recurrent Neural Networks for Dynamic MR Image Reconstruction.
    Qin C; Schlemper J; Caballero J; Price AN; Hajnal JV; Rueckert D
    IEEE Trans Med Imaging; 2019 Jan; 38(1):280-290. PubMed ID: 30080145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MRI artifact correction using sparse + low-rank decomposition of annihilating filter-based hankel matrix.
    Jin KH; Um JY; Lee D; Lee J; Park SH; Ye JC
    Magn Reson Med; 2017 Jul; 78(1):327-340. PubMed ID: 27464787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved robust tensor principal component analysis for accelerating dynamic MR imaging reconstruction.
    Jiang M; Shen Q; Li Y; Yang X; Zhang J; Wang Y; Xia L
    Med Biol Eng Comput; 2020 Jul; 58(7):1483-1498. PubMed ID: 32372326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerating Dynamic Cardiac MR imaging using structured sparse representation.
    Cai N; Wang S; Zhu S; Liang D
    Comput Math Methods Med; 2013; 2013():160139. PubMed ID: 24454528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MEDL-Net: A model-based neural network for MRI reconstruction with enhanced deep learned regularizers.
    Qiao X; Huang Y; Li W
    Magn Reson Med; 2023 May; 89(5):2062-2075. PubMed ID: 36656129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency-splitting dynamic MRI reconstruction using multi-scale 3D convolutional sparse coding and automatic parameter selection.
    Nguyen-Duc T; Quan TM; Jeong WK
    Med Image Anal; 2019 Apr; 53():179-196. PubMed ID: 30798117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic cardiac MRI reconstruction using motion aligned locally low rank tensor (MALLRT).
    Liu F; Li D; Jin X; Qiu W; Xia Q; Sun B
    Magn Reson Imaging; 2020 Feb; 66():104-115. PubMed ID: 31278998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compressed sensing dynamic cardiac cine MRI using learned spatiotemporal dictionary.
    Wang Y; Ying L
    IEEE Trans Biomed Eng; 2014 Apr; 61(4):1109-20. PubMed ID: 24658236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.