BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37666183)

  • 1. Investigation on repairing diabetic foot ulcer based on 3D bio-printing Gel/dECM/Qcs composite scaffolds.
    Zhong Y; Ma H; Lu Y; Cao L; Cheng YY; Tang X; Sun H; Song K
    Tissue Cell; 2023 Dec; 85():102213. PubMed ID: 37666183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 3D bioprinted decellularized extracellular matrix/gelatin/quaternized chitosan scaffold assembling with poly(ionic liquid)s for skin tissue engineering.
    Xu J; Fang H; Su Y; Kang Y; Xu D; Cheng YY; Nie Y; Wang H; Liu T; Song K
    Int J Biol Macromol; 2022 Nov; 220():1253-1266. PubMed ID: 36041579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D bioprinting of dECM/Gel/QCS/nHAp hybrid scaffolds laden with mesenchymal stem cell-derived exosomes to improve angiogenesis and osteogenesis.
    Kang Y; Xu J; Meng L; Su Y; Fang H; Liu J; Cheng YY; Jiang D; Nie Y; Song K
    Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36756934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A biological functional hybrid scaffold based on decellularized extracellular matrix/gelatin/chitosan with high biocompatibility and antibacterial activity for skin tissue engineering.
    Xu J; Fang H; Zheng S; Li L; Jiao Z; Wang H; Nie Y; Liu T; Song K
    Int J Biol Macromol; 2021 Sep; 187():840-849. PubMed ID: 34339783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan.
    Yang Y; Yang S; Wang Y; Yu Z; Ao H; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2016 Dec; 46():112-128. PubMed ID: 27686039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Construction of a novel tissue engineered meniscus scaffold based on low temperature deposition three-dimenisonal printing technology].
    Chen M; Wu J; Yin H; Sui X; Liu S; Guo Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2024 Jun; 38(6):748-754. PubMed ID: 38918198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of 3D-printed tissue-engineered skin substitute using innovative biomaterial loaded with human adipose-derived stem cells in wound healing.
    Fu H; Zhang D; Zeng J; Fu Q; Chen Z; Sun X; Yang Y; Li S; Chen M
    Int J Bioprint; 2023; 9(2):674. PubMed ID: 37065662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue-Specific Hydrogels for Three-Dimensional Printing and Potential Application in Peripheral Nerve Regeneration.
    Wang T; Han Y; Wu Z; Qiu S; Rao Z; Zhao C; Zhu Q; Quan D; Bai Y; Liu X
    Tissue Eng Part A; 2022 Feb; 28(3-4):161-174. PubMed ID: 34309417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biocompatible double-crosslinked gelatin/ sodium alginate/dopamine/quaterniazed chitosan hydrogel for wound dressings based on 3D bioprinting technology.
    Yueqi L; Jie X; Ya S; Huan F; Jiaqi L; Siyao L; Yuen Yee C; Yi N; Wenfang L; Bo P; Kedong S
    Int J Bioprint; 2023; 9(2):689. PubMed ID: 37125261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation.
    Sahai N; Gogoi M; Tewari RP
    Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models.
    Yang Y; Chu L; Yang S; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2018 Oct; 79():265-275. PubMed ID: 30125670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Satureja cuneifolia-loaded sodium alginate/polyethylene glycol scaffolds produced by 3D-printing technology as a diabetic wound dressing material.
    Ilhan E; Cesur S; Guler E; Topal F; Albayrak D; Guncu MM; Cam ME; Taskin T; Sasmazel HT; Aksu B; Oktar FN; Gunduz O
    Int J Biol Macromol; 2020 Oct; 161():1040-1054. PubMed ID: 32544577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced wound-healing capability with inherent antimicrobial activities of usnic acid incorporated poly(ε-caprolactone)/decellularized extracellular matrix nanofibrous scaffold.
    Chandika P; Khan F; Heo SY; Kim YM; Yi M; Jung WK
    Biomater Adv; 2022 Sep; 140():213046. PubMed ID: 35930818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinspired 3D-printed scaffold embedding DDAB-nano ZnO/nanofibrous microspheres for regenerative diabetic wound healing.
    Metwally WM; El-Habashy SE; El-Hosseiny LS; Essawy MM; Eltaher HM; El-Khordagui LK
    Biofabrication; 2023 Oct; 16(1):. PubMed ID: 37751750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Platelet-rich plasma-loaded bioactive chitosan@sodium alginate@gelatin shell-core fibrous hydrogels with enhanced sustained release of growth factors for diabetic foot ulcer healing.
    Huang Q; Wu T; Guo Y; Wang L; Yu X; Zhu B; Fan L; Xin JH; Yu H
    Int J Biol Macromol; 2023 Apr; 234():123722. PubMed ID: 36801280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of 3D polycaprolactone/ε-polylysine-modified chitosan fibrous scaffolds with incorporation of bioactive factors for accelerating wound healing.
    Li P; Ruan L; Jiang G; Sun Y; Wang R; Gao X; Yunusov KE; Aharodnikau UE; Solomevich SO
    Acta Biomater; 2022 Oct; 152():197-209. PubMed ID: 36084922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Printing of Microenvironment-Specific Bioinspired and Exosome-Reinforced Hydrogel Scaffolds for Efficient Cartilage and Subchondral Bone Regeneration.
    Li Q; Yu H; Zhao F; Cao C; Wu T; Fan Y; Ao Y; Hu X
    Adv Sci (Weinh); 2023 Sep; 10(26):e2303650. PubMed ID: 37424038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and characterization of chitosan based collagen/ gelatin composite scaffolds from big eye snapper Priacanthus hamrur skin for antimicrobial and anti oxidant applications.
    Radhika Rajasree SR; Gobalakrishnan M; Aranganathan L; Karthih MG
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110270. PubMed ID: 31761224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of GelMA/PCL and dECM/PCL resins for 3D printing of acellular in vitro tissue scaffolds by stereolithography.
    Elomaa L; Keshi E; Sauer IM; Weinhart M
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110958. PubMed ID: 32409091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of Liver Decellularized Extracellular Matrix Bioink for Three-Dimensional Cell Printing-Based Liver Tissue Engineering.
    Lee H; Han W; Kim H; Ha DH; Jang J; Kim BS; Cho DW
    Biomacromolecules; 2017 Apr; 18(4):1229-1237. PubMed ID: 28277649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.