These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. CRISPR/Cas9 genome editing in wheat: enhancing quality and productivity for global food security-a review. Elsharawy H; Refat M Funct Integr Genomics; 2023 Aug; 23(3):265. PubMed ID: 37541970 [TBL] [Abstract][Full Text] [Related]
6. Application of CRISPR/Cas system in cereal improvement for biotic and abiotic stress tolerance. Maharajan T; Krishna TPA; Rakkammal K; Ceasar SA; Ramesh M Planta; 2022 Nov; 256(6):106. PubMed ID: 36326904 [TBL] [Abstract][Full Text] [Related]
7. CRISPR enables sustainable cereal production for a greener future. Ahmar S; Usman B; Hensel G; Jung KH; Gruszka D Trends Plant Sci; 2024 Feb; 29(2):179-195. PubMed ID: 37981496 [TBL] [Abstract][Full Text] [Related]
8. Evolution and Application of Genome Editing Techniques for Achieving Food and Nutritional Security. Fiaz S; Ahmar S; Saeed S; Riaz A; Mora-Poblete F; Jung KH Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070430 [TBL] [Abstract][Full Text] [Related]
9. Genome Editing by CRISPR/Cas9 in Sorghum Through Biolistic Bombardment. Liu G; Li J; Godwin ID Methods Mol Biol; 2019; 1931():169-183. PubMed ID: 30652290 [TBL] [Abstract][Full Text] [Related]
10. Genetically modified crop regulations: scope and opportunity using the CRISPR-Cas9 genome editing approach. Gupta S; Kumar A; Patel R; Kumar V Mol Biol Rep; 2021 May; 48(5):4851-4863. PubMed ID: 34114124 [TBL] [Abstract][Full Text] [Related]
11. Perspectives on the Application of Genome-Editing Technologies in Crop Breeding. Hua K; Zhang J; Botella JR; Ma C; Kong F; Liu B; Zhu JK Mol Plant; 2019 Aug; 12(8):1047-1059. PubMed ID: 31260812 [TBL] [Abstract][Full Text] [Related]
12. CRISPR/Cas: A powerful tool for gene function study and crop improvement. Zhang D; Zhang Z; Unver T; Zhang B J Adv Res; 2021 Mar; 29():207-221. PubMed ID: 33842017 [TBL] [Abstract][Full Text] [Related]
13. CRISPR-Based Genome Editing: Advancements and Opportunities for Rice Improvement. Zegeye WA; Tsegaw M; Zhang Y; Cao L Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457271 [TBL] [Abstract][Full Text] [Related]
14. Tailoring crops with superior product quality through genome editing: an update. Ravikiran KT; Thribhuvan R; Sheoran S; Kumar S; Kushwaha AK; Vineeth TV; Saini M Planta; 2023 Mar; 257(5):86. PubMed ID: 36949234 [TBL] [Abstract][Full Text] [Related]
15. CRISPR/Cas genome editing in plants: Dawn of Agrobacterium transformation for recalcitrant and transgene-free plants for future crop breeding. Antony Ceasar S; Ignacimuthu S Plant Physiol Biochem; 2023 Mar; 196():724-730. PubMed ID: 36812799 [TBL] [Abstract][Full Text] [Related]
16. Modern Trends in Plant Genome Editing: An Inclusive Review of the CRISPR/Cas9 Toolbox. Razzaq A; Saleem F; Kanwal M; Mustafa G; Yousaf S; Imran Arshad HM; Hameed MK; Khan MS; Joyia FA Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31430902 [TBL] [Abstract][Full Text] [Related]
17. Opportunities and Challenges of In Vitro Tissue Culture Systems in the Era of Crop Genome Editing. Bekalu ZE; Panting M; Bæksted Holme I; Brinch-Pedersen H Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569295 [TBL] [Abstract][Full Text] [Related]
18. CRISPR/Cas systems: opportunities and challenges for crop breeding. Biswas S; Zhang D; Shi J Plant Cell Rep; 2021 Jun; 40(6):979-998. PubMed ID: 33977326 [TBL] [Abstract][Full Text] [Related]
19. Genome edited wheat- current advances for the second green revolution. Awan MJA; Pervaiz K; Rasheed A; Amin I; Saeed NA; Dhugga KS; Mansoor S Biotechnol Adv; 2022 Nov; 60():108006. PubMed ID: 35732256 [TBL] [Abstract][Full Text] [Related]
20. State-of-the-Art in CRISPR Technology and Engineering Drought, Salinity, and Thermo-tolerant crop plants. Chennakesavulu K; Singh H; Trivedi PK; Jain M; Yadav SR Plant Cell Rep; 2022 Mar; 41(3):815-831. PubMed ID: 33742256 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]