These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 37666609)
1. Characterization of the physiological, histopathological, and gene expression alterations in Spodoptera frugiperda larval midguts affected by toosendanin exposure. Lin Y; Huang Y; Liu J; Liu L; Cai X; Lin J; Shu B Pestic Biochem Physiol; 2023 Sep; 195():105537. PubMed ID: 37666609 [TBL] [Abstract][Full Text] [Related]
2. The effects of carvacrol on development and gene expression profiles in Spodoptera frugiperda. Liu J; Lin Y; Huang Y; Liu L; Cai X; Lin J; Shu B Pestic Biochem Physiol; 2023 Sep; 195():105539. PubMed ID: 37666589 [TBL] [Abstract][Full Text] [Related]
3. Characterization and transcriptomic analyses of the toxicity induced by toosendanin in Spodoptera frugipreda. Shu B; Lin Y; Huang Y; Liu L; Cai X; Lin J; Zhang J Gene; 2024 Jan; 893():147928. PubMed ID: 37898452 [TBL] [Abstract][Full Text] [Related]
4. Role of digestive protease enzymes and related genes in host plant adaptation of a polyphagous pest, Spodoptera frugiperda. Hafeez M; Li XW; Zhang JM; Zhang ZJ; Huang J; Wang LK; Khan MM; Shah S; Fernández-Grandon GM; Lu YB Insect Sci; 2021 Jun; 28(3):611-626. PubMed ID: 33629522 [TBL] [Abstract][Full Text] [Related]
5. Integrated miRNA and transcriptome profiling to explore the molecular mechanism of Spodoptera frugiperda larval midgut in response to azadirachtin exposure. Shu B; Lin Y; Qian G; Cai X; Liu L; Lin J Pestic Biochem Physiol; 2022 Oct; 187():105192. PubMed ID: 36127051 [TBL] [Abstract][Full Text] [Related]
6. Behavioral and Physiological Plasticity Provides Insights into Molecular Based Adaptation Mechanism to Strain Shift in Hafeez M; Li X; Ullah F; Zhang Z; Zhang J; Huang J; Khan MM; Chen L; Ren X; Zhou S; Fernández-Grandon GM; Zalucki MP; Lu Y Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638623 [TBL] [Abstract][Full Text] [Related]
7. Transcriptomics and metagenomics of common cutworm (Spodoptera litura) and fall armyworm (Spodoptera frugiperda) demonstrate differences in detoxification and development. Tang R; Liu F; Lan Y; Wang J; Wang L; Li J; Liu X; Fan Z; Guo T; Yue B BMC Genomics; 2022 May; 23(1):388. PubMed ID: 35596140 [TBL] [Abstract][Full Text] [Related]
8. Effects of azadirachtin on detoxification-related gene expression in the fat bodies of the fall armyworm, Spodoptera frugiperda. Yu H; Yang X; Dai J; Li Y; Veeran S; Lin J; Shu B Environ Sci Pollut Res Int; 2023 Mar; 30(15):42587-42595. PubMed ID: 35294689 [TBL] [Abstract][Full Text] [Related]
9. The bacterial and fungal communities of the larval midgut of Spodoptera frugiperda (Lepidoptera: Noctuidae) varied by feeding on two cruciferous vegetables. Yuning L; Luyang L; Xueming C; Xianmei Y; Jintian L; Benshui S Sci Rep; 2022 Jul; 12(1):13063. PubMed ID: 35906471 [TBL] [Abstract][Full Text] [Related]
10. Identification of azadirachtin responsive genes in Spodoptera frugiperda larvae based on RNA-seq. Shu B; Yu H; Li Y; Zhong H; Li X; Cao L; Lin J Pestic Biochem Physiol; 2021 Feb; 172():104745. PubMed ID: 33518039 [TBL] [Abstract][Full Text] [Related]
11. Gene Cloning, Heterologous Expression, and In Silico Analysis of Chitinase B from El-Sayed GM; Emam MTH; Hammad MA; Mahmoud SH Molecules; 2024 Mar; 29(7):. PubMed ID: 38611746 [No Abstract] [Full Text] [Related]
12. Insecticidal activity and underlying molecular mechanisms of a phytochemical plumbagin against Sun X; Li W; Yang S; Ni X; Han S; Wang M; Zhen C; Huang X Front Physiol; 2024; 15():1427385. PubMed ID: 38974516 [TBL] [Abstract][Full Text] [Related]
13. Growth inhibition of Spodoptera frugiperda larvae by camptothecin correlates with alteration of the structures and gene expression profiles of the midgut. Shu B; Zou Y; Yu H; Zhang W; Li X; Cao L; Lin J BMC Genomics; 2021 May; 22(1):391. PubMed ID: 34039281 [TBL] [Abstract][Full Text] [Related]
14. Synergistic effects of chlorantraniliprole and camptothecin on physiological impairments, histopathological, biochemical changes, and genes responses in the larvae midgut of Spodoptera frugiperda. Ngegba PM; Cui G; Li Y; Zhong G Pestic Biochem Physiol; 2023 Apr; 191():105363. PubMed ID: 36963934 [TBL] [Abstract][Full Text] [Related]
15. Midgut metabolomic profiling of fall armyworm (Spodoptera frugiperda) with field-evolved resistance to Cry1F corn. Abdelgaffar H; Tague ED; Castro Gonzalez HF; Campagna SR; Jurat-Fuentes JL Insect Biochem Mol Biol; 2019 Mar; 106():1-9. PubMed ID: 30630033 [TBL] [Abstract][Full Text] [Related]
16. Bacillus thuringiensis Cry1Ab Domain III β-22 Mutants with Enhanced Toxicity to Spodoptera frugiperda (J. E. Smith). Gómez I; Ocelotl J; Sánchez J; Aguilar-Medel S; Peña-Chora G; Lina-Garcia L; Bravo A; Soberón M Appl Environ Microbiol; 2020 Oct; 86(22):. PubMed ID: 32887720 [TBL] [Abstract][Full Text] [Related]
17. Transcript expression plasticity as a response to alternative larval host plants in the speciation process of corn and rice strains of Spodoptera frugiperda. Silva-Brandão KL; Horikoshi RJ; Bernardi D; Omoto C; Figueira A; Brandão MM BMC Genomics; 2017 Oct; 18(1):792. PubMed ID: 29037161 [TBL] [Abstract][Full Text] [Related]
18. Gene Expression Differences Between Developmental Stages of the Fall Armyworm ( Wang L; Yang Q; Tang R; Liu X; Fan Z; Li J; Price M; Yue B DNA Cell Biol; 2021 Apr; 40(4):580-588. PubMed ID: 33761271 [TBL] [Abstract][Full Text] [Related]
19. Molecular characterization and functional analysis of cytochrome P450-mediated detoxification Hafeez M; Li X; Chen L; Ullah F; Huang J; Zhang Z; Zhang J; Siddiqui JA; Zhou SX; Ren XY; Imran M; Assiri MA; Lou Y; Lu Y Front Plant Sci; 2022; 13():1079442. PubMed ID: 36762173 [TBL] [Abstract][Full Text] [Related]
20. Cascading Effects of Cover Crops on the Subsequent Cash Crop Defense against the Polyphagous Herbivore Fall Armyworm ( Fajemisin A; Racelis A; Kariyat R Insects; 2023 Feb; 14(2):. PubMed ID: 36835746 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]