These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37667120)

  • 1. Analysis of the factors influencing the water-energy-food system stress in China.
    Jin B; Shi R; Chen S; He Y; Zhao M
    Environ Sci Pollut Res Int; 2024 Jul; 31(34):46686-46702. PubMed ID: 37667120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A copula-based security risk evaluation and probability calculation for water-energy-food nexus.
    Li W; Jiang S; Zhao Y; Li H; Zhu Y; He G; Xu Y; Shang Y
    Sci Total Environ; 2023 Jan; 856(Pt 2):159236. PubMed ID: 36208755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Comprehensive Evaluation Framework of Water-Energy-Food System Coupling Coordination in the Yellow River Basin, China.
    Yin D; Yu H; Lu Y; Zhang J; Li G; Li X
    Chin Geogr Sci; 2023; 33(2):333-350. PubMed ID: 36974306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring interactions in the local water-energy-food nexus (WEF-Nexus) using a simultaneous equations model.
    Huang D; Li G; Sun C; Liu Q
    Sci Total Environ; 2020 Feb; 703():135034. PubMed ID: 31767331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling coordination analysis of China's provincial water-energy-food nexus.
    Qi Y; Farnoosh A; Lin L; Liu H
    Environ Sci Pollut Res Int; 2022 Apr; 29(16):23303-23313. PubMed ID: 34802097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A system dynamics model to simulate the water-energy-food nexus of resource-based regions: A case study in Daqing City, China.
    Wen C; Dong W; Zhang Q; He N; Li T
    Sci Total Environ; 2022 Feb; 806(Pt 1):150497. PubMed ID: 34583077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Input-Output Efficiency of Water-Energy-Food and Its Driving Forces: Spatial-Temporal Heterogeneity of Yangtze River Economic Belt, China.
    Ge M; Yu K; Ding A; Liu G
    Int J Environ Res Public Health; 2022 Jan; 19(3):. PubMed ID: 35162370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of Regional Water-Energy-Food Systems Based on Interval Number Multi-Objective Programming: A Case Study of Ordos, China.
    Chen J; Zhou Z; Chen L; Ding T
    Int J Environ Res Public Health; 2020 Oct; 17(20):. PubMed ID: 33076471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of an integration platform between the water-energy nexus and a business model applied for sustainable development.
    Mosalam HA; El-Barad M
    Water Sci Technol; 2020 Apr; 81(7):1398-1405. PubMed ID: 32616692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling and Coordination Degrees of the Core Water⁻Energy⁻Food Nexus in China.
    Xu S; He W; Shen J; Degefu DM; Yuan L; Kong Y
    Int J Environ Res Public Health; 2019 May; 16(9):. PubMed ID: 31083596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling efficiency and spatial dynamic evolution of urban water-energy-food in China-A case of evidence from 94 cities.
    Zhang Y; Wu Y; Lu Z; Li L; Wang P
    Heliyon; 2024 Jun; 10(12):e33187. PubMed ID: 39021937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecological balance emerges in implementing the water-energy-food security nexus in well-developed countries in Africa.
    Muhirwa F; Shen L; Elshkaki A; Zhong S; Hu S; Hirwa H; Chiaka JC; Umarishavu F; Mulinga N
    Sci Total Environ; 2022 Aug; 833():154999. PubMed ID: 35381257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics, regional differences, and influencing factors of China's water-energy-food (W-E-F) pressure: evidence from Dagum Gini coefficient decomposition and PGTWR model.
    Xiao W; He M
    Environ Sci Pollut Res Int; 2023 May; 30(24):66062-66079. PubMed ID: 37097564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The water-energy-food nexus: a systematic bibliometric analysis.
    Lv Y; Yuan M; Zhou X; Wang Y; Qu X
    Environ Sci Pollut Res Int; 2023 Dec; 30(58):121354-121369. PubMed ID: 37996584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatio-temporal comprehensive measurement of China's agricultural green development level and associated influencing factors.
    Cheng L; Gao Y; Dai X
    PLoS One; 2023; 18(8):e0288599. PubMed ID: 37540681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A systematic analysis of Water-Energy-Food security nexus: A South Asian case study.
    Putra MPIF; Pradhan P; Kropp JP
    Sci Total Environ; 2020 Aug; 728():138451. PubMed ID: 32570309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal-Spatial Evolution and Influencing Factors of Coordinated Development of the Population, Resources, Economy and Environment (PREE) System: Evidence from 31 Provinces in China.
    Cao J; Zhang Y; Wei T; Sun H
    Int J Environ Res Public Health; 2021 Dec; 18(24):. PubMed ID: 34948656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic evolution of water-energy-food system resilience and efficiency in urban agglomerations.
    An H; Li X; Huang J; Wu H
    J Environ Manage; 2024 Mar; 355():120371. PubMed ID: 38452619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new paradigm of water, food, and energy nexus.
    Molajou A; Afshar A; Khosravi M; Soleimanian E; Vahabzadeh M; Variani HA
    Environ Sci Pollut Res Int; 2023 Oct; 30(49):107487-107497. PubMed ID: 33634401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The water-energy-food nexus and COVID-19: Towards a systematization of impacts and responses.
    Al-Saidi M; Hussein H
    Sci Total Environ; 2021 Jul; 779():146529. PubMed ID: 34030272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.