These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37668293)

  • 21. Brain computer interface to distinguish between self and other related errors in human agent collaboration.
    Dimova-Edeleva V; Ehrlich SK; Cheng G
    Sci Rep; 2022 Dec; 12(1):20764. PubMed ID: 36456595
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new error-monitoring brain-computer interface based on reinforcement learning for people with autism spectrum disorders.
    Pires G; Cruz A; Jesus D; Yasemin M; Nunes UJ; Sousa T; Castelo-Branco M
    J Neural Eng; 2022 Dec; 19(6):. PubMed ID: 36541535
    [No Abstract]   [Full Text] [Related]  

  • 23. [Classification algorithms of error-related potentials in brain-computer interface].
    Sun J; Jung TP; Xiao X; Meng J; Xu M; Ming D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Jun; 38(3):463-472. PubMed ID: 34180191
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep-learning online EEG decoding brain-computer interface using error-related potentials recorded with a consumer-grade headset.
    Ancau DM; Ancau M; Ancau M
    Biomed Phys Eng Express; 2022 Jan; 8(2):. PubMed ID: 35038681
    [No Abstract]   [Full Text] [Related]  

  • 25. Improving non-invasive trajectory decoding via neural correlates of continuous erroneous feedback processing.
    Pulferer HS; Kostoglou K; Müller-Putz GR
    J Neural Eng; 2024 Sep; 21(5):. PubMed ID: 39231465
    [No Abstract]   [Full Text] [Related]  

  • 26. Error Correction Regression Framework for Enhancing the Decoding Accuracies of Ear-EEG Brain-Computer Interfaces.
    Kwak NS; Lee SW
    IEEE Trans Cybern; 2020 Aug; 50(8):3654-3667. PubMed ID: 31295141
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving EEG-based error detection using relative peak features.
    Ashley AL; Arvaneh M
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():272-275. PubMed ID: 33017981
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An error-aware gaze-based keyboard by means of a hybrid BCI system.
    Kalaganis FP; Chatzilari E; Nikolopoulos S; Kompatsiaris I; Laskaris NA
    Sci Rep; 2018 Sep; 8(1):13176. PubMed ID: 30181532
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Online asynchronous decoding of error-related potentials during the continuous control of a robot.
    Lopes-Dias C; Sburlea AI; Müller-Putz GR
    Sci Rep; 2019 Nov; 9(1):17596. PubMed ID: 31772232
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-Trial EEG Classification of Similar Errors.
    Wirth C; Lacey E; Dockree P; Arvaneh M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1919-1922. PubMed ID: 30440773
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detection of tactile-based error-related potentials (ErrPs) in human-robot interaction.
    Kim SK; Kirchner EA
    Front Neurorobot; 2023; 17():1297990. PubMed ID: 38162893
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Error-related EEG potentials generated during simulated brain-computer interaction.
    Ferrez PW; del R Millan J
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):923-9. PubMed ID: 18334383
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human-agent co-adaptation using error-related potentials.
    Ehrlich SK; Cheng G
    J Neural Eng; 2018 Dec; 15(6):066014. PubMed ID: 30204127
    [TBL] [Abstract][Full Text] [Related]  

  • 34. EEG-based decoding of error-related brain activity in a real-world driving task.
    Zhang H; Chavarriaga R; Khaliliardali Z; Gheorghe L; Iturrate I; Millán Jd
    J Neural Eng; 2015 Dec; 12(6):066028. PubMed ID: 26595103
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of psychological and cognitive states on error-related negativity evoked during post-stroke rehabilitation movements.
    Kumar A; Fang Q; Pirogova E
    Biomed Eng Online; 2021 Feb; 20(1):13. PubMed ID: 33531009
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Embodying Others in Immersive Virtual Reality: Electro-Cortical Signatures of Monitoring the Errors in the Actions of an Avatar Seen from a First-Person Perspective.
    Pavone EF; Tieri G; Rizza G; Tidoni E; Grisoni L; Aglioti SM
    J Neurosci; 2016 Jan; 36(2):268-79. PubMed ID: 26758821
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On Error-Related Potentials During Sensorimotor-Based Brain-Computer Interface: Explorations With a Pseudo-Online Brain-Controlled Speller.
    Bevilacqua M; Perdikis S; Millan JDR
    IEEE Open J Eng Med Biol; 2020; 1():17-22. PubMed ID: 35402943
    [No Abstract]   [Full Text] [Related]  

  • 38. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.
    Lawhern VJ; Solon AJ; Waytowich NR; Gordon SM; Hung CP; Lance BJ
    J Neural Eng; 2018 Oct; 15(5):056013. PubMed ID: 29932424
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces.
    Iturrate I; Montesano L; Minguez J
    J Neural Eng; 2013 Apr; 10(2):026024. PubMed ID: 23528750
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toward a semi-self-paced EEG brain computer interface: decoding initiation state from non-initiation state in dedicated time slots.
    Yang L; Leung H; Peterson DA; Sejnowski TJ; Poizner H
    PLoS One; 2014; 9(2):e88915. PubMed ID: 24586440
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.