BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 37668915)

  • 1. Spinal Cord Injury and Assays for Regeneration.
    Burris B; Mokalled MH
    Methods Mol Biol; 2024; 2707():215-222. PubMed ID: 37668915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of Swim Endurance and Swim Behavior in Adult Zebrafish.
    Burris B; Jensen N; Mokalled MH
    J Vis Exp; 2021 Nov; (177):. PubMed ID: 34842242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progenitor-derived glia are required for spinal cord regeneration in zebrafish.
    Zhou L; McAdow AR; Yamada H; Burris B; Klatt Shaw D; Oonk K; Poss KD; Mokalled MH
    Development; 2023 May; 150(10):. PubMed ID: 37213080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish.
    Mokalled MH; Patra C; Dickson AL; Endo T; Stainier DY; Poss KD
    Science; 2016 Nov; 354(6312):630-634. PubMed ID: 27811277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localized EMT reprograms glial progenitors to promote spinal cord repair.
    Klatt Shaw D; Saraswathy VM; Zhou L; McAdow AR; Burris B; Butka E; Morris SA; Dietmann S; Mokalled MH
    Dev Cell; 2021 Mar; 56(5):613-626.e7. PubMed ID: 33609461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Syntenin-a promotes spinal cord regeneration following injury in adult zebrafish.
    Yu Y; Schachner M
    Eur J Neurosci; 2013 Jul; 38(2):2280-9. PubMed ID: 23607754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In toto imaging of glial JNK signaling during larval zebrafish spinal cord regeneration.
    Becker CJ; Cigliola V; Gillotay P; Rich A; De Simone A; Han Y; Di Talia S; Poss KD
    Development; 2023 Dec; 150(24):. PubMed ID: 37997694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The asparaginyl endopeptidase legumain is essential for functional recovery after spinal cord injury in adult zebrafish.
    Ma L; Shen YQ; Khatri HP; Schachner M
    PLoS One; 2014; 9(4):e95098. PubMed ID: 24747977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A surgery protocol for adult zebrafish spinal cord injury.
    Fang P; Lin JF; Pan HC; Shen YQ; Schachner M
    J Genet Genomics; 2012 Sep; 39(9):481-7. PubMed ID: 23021548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional trajectories during innate spinal cord repair.
    Jensen NO; Burris B; Zhou L; Yamada H; Reyes C; Pincus Z; Mokalled MH
    Front Mol Neurosci; 2023; 16():1155754. PubMed ID: 37492522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Meningeal cells and glia establish a permissive environment for axon regeneration after spinal cord injury in newts.
    Zukor KA; Kent DT; Odelberg SJ
    Neural Dev; 2011 Jan; 6():1. PubMed ID: 21205291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of lesion proximity on the regenerative response of long descending propriospinal neurons after spinal transection injury.
    Swieck K; Conta-Steencken A; Middleton FA; Siebert JR; Osterhout DJ; Stelzner DJ
    BMC Neurosci; 2019 Mar; 20(1):10. PubMed ID: 30885135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semaphorin4D promotes axon regrowth and swimming ability during recovery following zebrafish spinal cord injury.
    Peng SX; Yao L; Cui C; Zhao HD; Liu CJ; Li YH; Wang LF; Huang SB; Shen YQ
    Neuroscience; 2017 May; 351():36-46. PubMed ID: 28347780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wnt/ß-catenin signaling is required for radial glial neurogenesis following spinal cord injury.
    Briona LK; Poulain FE; Mosimann C; Dorsky RI
    Dev Biol; 2015 Jul; 403(1):15-21. PubMed ID: 25888075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transplantation of mesenchymal stem cells that overexpress NT-3 produce motor improvements without axonal regeneration following complete spinal cord transections in rats.
    Stewart AN; Kendziorski G; Deak ZM; Bartosek NC; Rezmer BE; Jenrow K; Rossignol J; Dunbar GL
    Brain Res; 2018 Nov; 1699():19-33. PubMed ID: 29883625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wnt/β-catenin signaling promotes regeneration after adult zebrafish spinal cord injury.
    Strand NS; Hoi KK; Phan TMT; Ray CA; Berndt JD; Moon RT
    Biochem Biophys Res Commun; 2016 Sep; 477(4):952-956. PubMed ID: 27387232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of functional recovery in a larval zebrafish model of spinal cord injury.
    Hossainian D; Shao E; Jiao B; Ilin VA; Parris RS; Zhou Y; Bai Q; Burton EA
    J Neurosci Res; 2022 Nov; 100(11):2044-2054. PubMed ID: 35986577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radial glial progenitors repair the zebrafish spinal cord following transection.
    Briona LK; Dorsky RI
    Exp Neurol; 2014 Jun; 256():81-92. PubMed ID: 24721238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regenerative capacity in the lamprey spinal cord is not altered after a repeated transection.
    Hanslik KL; Allen SR; Harkenrider TL; Fogerson SM; Guadarrama E; Morgan JR
    PLoS One; 2019; 14(1):e0204193. PubMed ID: 30699109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spinal cord repair is modulated by the neurogenic factor Hb-egf under direction of a regeneration-associated enhancer.
    Cigliola V; Shoffner A; Lee N; Ou J; Gonzalez TJ; Hoque J; Becker CJ; Han Y; Shen G; Faw TD; Abd-El-Barr MM; Varghese S; Asokan A; Poss KD
    Nat Commun; 2023 Aug; 14(1):4857. PubMed ID: 37567873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.