These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 37669154)
1. DeepMHCI: an anchor position-aware deep interaction model for accurate MHC-I peptide binding affinity prediction. Qu W; You R; Mamitsuka H; Zhu S Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37669154 [TBL] [Abstract][Full Text] [Related]
2. DeepMHCII: a novel binding core-aware deep interaction model for accurate MHC-II peptide binding affinity prediction. You R; Qu W; Mamitsuka H; Zhu S Bioinformatics; 2022 Jun; 38(Suppl 1):i220-i228. PubMed ID: 35758790 [TBL] [Abstract][Full Text] [Related]
3. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. Nielsen M; Lundegaard C; Lund O BMC Bioinformatics; 2007 Jul; 8():238. PubMed ID: 17608956 [TBL] [Abstract][Full Text] [Related]
4. Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms. Rajapakse M; Schmidt B; Feng L; Brusic V BMC Bioinformatics; 2007 Nov; 8():459. PubMed ID: 18031584 [TBL] [Abstract][Full Text] [Related]
5. Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes. Zhao W; Sher X PLoS Comput Biol; 2018 Nov; 14(11):e1006457. PubMed ID: 30408041 [TBL] [Abstract][Full Text] [Related]
6. RPEMHC: improved prediction of MHC-peptide binding affinity by a deep learning approach based on residue-residue pair encoding. Wang X; Wu T; Jiang Y; Chen T; Pan D; Jin Z; Xie J; Quan L; Lyu Q Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38175759 [TBL] [Abstract][Full Text] [Related]
7. Deep learning pan-specific model for interpretable MHC-I peptide binding prediction with improved attention mechanism. Jin J; Liu Z; Nasiri A; Cui Y; Louis SY; Zhang A; Zhao Y; Hu J Proteins; 2021 Jul; 89(7):866-883. PubMed ID: 33594723 [TBL] [Abstract][Full Text] [Related]
8. Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach. Nielsen M; Lundegaard C; Worning P; Hvid CS; Lamberth K; Buus S; Brunak S; Lund O Bioinformatics; 2004 Jun; 20(9):1388-97. PubMed ID: 14962912 [TBL] [Abstract][Full Text] [Related]
9. Determination of a Predictive Cleavage Motif for Eluted Major Histocompatibility Complex Class II Ligands. Paul S; Karosiene E; Dhanda SK; Jurtz V; Edwards L; Nielsen M; Sette A; Peters B Front Immunol; 2018; 9():1795. PubMed ID: 30127785 [TBL] [Abstract][Full Text] [Related]
10. Coupling in silico and in vitro analysis of peptide-MHC binding: a bioinformatic approach enabling prediction of superbinding peptides and anchorless epitopes. Doytchinova IA; Walshe VA; Jones NA; Gloster SE; Borrow P; Flower DR J Immunol; 2004 Jun; 172(12):7495-502. PubMed ID: 15187128 [TBL] [Abstract][Full Text] [Related]
11. ACME: pan-specific peptide-MHC class I binding prediction through attention-based deep neural networks. Hu Y; Wang Z; Hu H; Wan F; Chen L; Xiong Y; Wang X; Zhao D; Huang W; Zeng J Bioinformatics; 2019 Dec; 35(23):4946-4954. PubMed ID: 31120490 [TBL] [Abstract][Full Text] [Related]
12. Automated benchmarking of peptide-MHC class I binding predictions. Trolle T; Metushi IG; Greenbaum JA; Kim Y; Sidney J; Lund O; Sette A; Peters B; Nielsen M Bioinformatics; 2015 Jul; 31(13):2174-81. PubMed ID: 25717196 [TBL] [Abstract][Full Text] [Related]
13. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction. Han Y; Kim D BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985 [TBL] [Abstract][Full Text] [Related]
14. MHC2MIL: a novel multiple instance learning based method for MHC-II peptide binding prediction by considering peptide flanking region and residue positions. Xu Y; Luo C; Qian M; Huang X; Zhu S BMC Genomics; 2014; 15 Suppl 9(Suppl 9):S9. PubMed ID: 25521198 [TBL] [Abstract][Full Text] [Related]
16. A pattern search method for putative anchor residues in T cell epitopes. Hobohm U; Meyerhans A Eur J Immunol; 1993 Jun; 23(6):1271-6. PubMed ID: 7684684 [TBL] [Abstract][Full Text] [Related]
17. A combined prediction strategy increases identification of peptides bound with high affinity and stability to porcine MHC class I molecules SLA-1*04:01, SLA-2*04:01, and SLA-3*04:01. Pedersen LE; Rasmussen M; Harndahl M; Nielsen M; Buus S; Jungersen G Immunogenetics; 2016 Feb; 68(2):157-65. PubMed ID: 26572135 [TBL] [Abstract][Full Text] [Related]
18. Performance Evaluation of MHC Class-I Binding Prediction Tools Based on an Experimentally Validated MHC-Peptide Binding Data Set. Bonsack M; Hoppe S; Winter J; Tichy D; Zeller C; Küpper MD; Schitter EC; Blatnik R; Riemer AB Cancer Immunol Res; 2019 May; 7(5):719-736. PubMed ID: 30902818 [TBL] [Abstract][Full Text] [Related]
19. TEPITOPEpan: extending TEPITOPE for peptide binding prediction covering over 700 HLA-DR molecules. Zhang L; Chen Y; Wong HS; Zhou S; Mamitsuka H; Zhu S PLoS One; 2012; 7(2):e30483. PubMed ID: 22383964 [TBL] [Abstract][Full Text] [Related]
20. MHC2SKpan: a novel kernel based approach for pan-specific MHC class II peptide binding prediction. Guo L; Luo C; Zhu S BMC Genomics; 2013; 14 Suppl 5(Suppl 5):S11. PubMed ID: 24564280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]