These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
44. An automated benchmarking platform for MHC class II binding prediction methods. Andreatta M; Trolle T; Yan Z; Greenbaum JA; Peters B; Nielsen M Bioinformatics; 2018 May; 34(9):1522-1528. PubMed ID: 29281002 [TBL] [Abstract][Full Text] [Related]
45. ConvNeXt-MHC: improving MHC-peptide affinity prediction by structure-derived degenerate coding and the ConvNeXt model. Zhang L; Song W; Zhu T; Liu Y; Chen W; Cao Y Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38561979 [TBL] [Abstract][Full Text] [Related]
46. Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network. Brusic V; Rudy G; Honeyman G; Hammer J; Harrison L Bioinformatics; 1998; 14(2):121-30. PubMed ID: 9545443 [TBL] [Abstract][Full Text] [Related]
47. Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Andreatta M; Nielsen M Bioinformatics; 2016 Feb; 32(4):511-7. PubMed ID: 26515819 [TBL] [Abstract][Full Text] [Related]
48. MultiRTA: a simple yet reliable method for predicting peptide binding affinities for multiple class II MHC allotypes. Bordner AJ; Mittelmann HD BMC Bioinformatics; 2010 Sep; 11():482. PubMed ID: 20868497 [TBL] [Abstract][Full Text] [Related]
49. MHCRoBERTa: pan-specific peptide-MHC class I binding prediction through transfer learning with label-agnostic protein sequences. Wang F; Wang H; Wang L; Lu H; Qiu S; Zang T; Zhang X; Hu Y Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35443027 [TBL] [Abstract][Full Text] [Related]
50. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification. Andreatta M; Karosiene E; Rasmussen M; Stryhn A; Buus S; Nielsen M Immunogenetics; 2015 Nov; 67(11-12):641-50. PubMed ID: 26416257 [TBL] [Abstract][Full Text] [Related]
51. A structure-based algorithm to predict potential binding peptides to MHC molecules with hydrophobic binding pockets. Altuvia Y; Sette A; Sidney J; Southwood S; Margalit H Hum Immunol; 1997 Nov; 58(1):1-11. PubMed ID: 9438204 [TBL] [Abstract][Full Text] [Related]
52. Prediction of human major histocompatibility complex class II binding peptides by continuous kernel discrimination method. He J; Yang G; Rao H; Li Z; Ding X; Chen Y Artif Intell Med; 2012 Jun; 55(2):107-15. PubMed ID: 22134095 [TBL] [Abstract][Full Text] [Related]
53. Improving the prediction of HLA class I-binding peptides using a supertype-based method. Wang S; Bai Z; Han J; Tian Y; Shang X; Wang L; Li J; Wu Y J Immunol Methods; 2014 Mar; 405():109-20. PubMed ID: 24508661 [TBL] [Abstract][Full Text] [Related]
54. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships. Hattotuwagama CK; Doytchinova IA; Flower DR Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004 [TBL] [Abstract][Full Text] [Related]
55. Class I MHC-peptide interaction: structural and functional aspects. Ruppert J; Kubo RT; Sidney J; Grey HM; Sette A Behring Inst Mitt; 1994 Jul; (94):48-60. PubMed ID: 7998914 [TBL] [Abstract][Full Text] [Related]
56. DeepLigand: accurate prediction of MHC class I ligands using peptide embedding. Zeng H; Gifford DK Bioinformatics; 2019 Jul; 35(14):i278-i283. PubMed ID: 31510651 [TBL] [Abstract][Full Text] [Related]