These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 37669232)

  • 1. Critical Assessment of Condensate Boundaries in Dual-Color Single Particle Tracking.
    Gao G; Walter NG
    J Phys Chem B; 2023 Sep; 127(36):7694-7707. PubMed ID: 37669232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous Confinement of mRNA Molecules at Biomolecular Condensate Boundaries.
    Perelman RT; Schmidt A; Khan U; Walter NG
    Cells; 2023 Sep; 12(18):. PubMed ID: 37759470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic particle unbinding modulates growth dynamics and size of transcription factor condensates in living cells.
    Muñoz-Gil G; Romero-Aristizabal C; Mateos N; Campelo F; de Llobet Cucalon LI; Beato M; Lewenstein M; Garcia-Parajo MF; Torreno-Pina JA
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2200667119. PubMed ID: 35881789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactants or scaffolds? RNAs of varying lengths control the thermodynamic stability of condensates differently.
    Sanchez-Burgos I; Herriott L; Collepardo-Guevara R; Espinosa JR
    Biophys J; 2023 Jul; 122(14):2973-2987. PubMed ID: 36883003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA regulates cohesiveness and porosity of a biological condensate.
    Chou HY; Aksimentiev A
    bioRxiv; 2024 Jan; ():. PubMed ID: 38260307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein Condensate Atlas from predictive models of heteromolecular condensate composition.
    Saar KL; Scrutton RM; Bloznelyte K; Morgunov AS; Good LL; Lee AA; Teichmann SA; Knowles TPJ
    Nat Commun; 2024 Jul; 15(1):5418. PubMed ID: 38987300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA at the surface of phase-separated condensates impacts their size and number.
    Cochard A; Garcia-Jove Navarro M; Piroska L; Kashida S; Kress M; Weil D; Gueroui Z
    Biophys J; 2022 May; 121(9):1675-1690. PubMed ID: 35364105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced surface passivation for high-sensitivity studies of biomolecular condensates.
    Yao RW; Rosen MK
    Proc Natl Acad Sci U S A; 2024 May; 121(22):e2403013121. PubMed ID: 38781207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defining basic rules for hardening influenza A virus liquid condensates.
    Etibor TA; Vale-Costa S; Sridharan S; Brás D; Becher I; Mello VH; Ferreira F; Alenquer M; Savitski MM; Amorim MJ
    Elife; 2023 Apr; 12():. PubMed ID: 37013374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BRD4-targeting PROTAC as a unique tool to study biomolecular condensates.
    Shi Y; Liao Y; Liu Q; Ni Z; Zhang Z; Shi M; Li P; Li H; Rao Y
    Cell Discov; 2023 May; 9(1):47. PubMed ID: 37156794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Image Analysis Pipeline for Quantifying the Features of Fluorescently-Labeled Biomolecular Condensates in Cells.
    Baggett DW; Medyukhina A; Tripathi S; Shirnekhi HK; Wu H; Pounds SB; Khairy K; Kriwacki R
    Front Bioinform; 2022; 2():897238. PubMed ID: 36304323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase separation at the nanoscale quantified by dcFCCS.
    Peng S; Li W; Yao Y; Xing W; Li P; Chen C
    Proc Natl Acad Sci U S A; 2020 Nov; 117(44):27124-27131. PubMed ID: 33087563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced Surface Passivation for High-Sensitivity Studies of Biomolecular Condensates.
    Yao RW; Rosen MK
    bioRxiv; 2024 Feb; ():. PubMed ID: 38405951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic Protein Condensates That Inducibly Recruit and Release Protein Activity in Living Cells.
    Yoshikawa M; Yoshii T; Ikuta M; Tsukiji S
    J Am Chem Soc; 2021 May; 143(17):6434-6446. PubMed ID: 33890764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-distance association of topological boundaries through nuclear condensates.
    Gamliel A; Meluzzi D; Oh S; Jiang N; Destici E; Rosenfeld MG; Nair SJ
    Proc Natl Acad Sci U S A; 2022 Aug; 119(32):e2206216119. PubMed ID: 35914133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA in formation and regulation of transcriptional condensates.
    Sharp PA; Chakraborty AK; Henninger JE; Young RA
    RNA; 2022 Jan; 28(1):52-57. PubMed ID: 34772787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Higher-order organization of biomolecular condensates.
    Fare CM; Villani A; Drake LE; Shorter J
    Open Biol; 2021 Jun; 11(6):210137. PubMed ID: 34129784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-molecule and ensemble methods to probe RNP nucleation and condensate properties.
    Rhine K; Skanchy S; Myong S
    Methods; 2022 Jan; 197():74-81. PubMed ID: 33610691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulating biomolecular condensates: a novel approach to drug discovery.
    Mitrea DM; Mittasch M; Gomes BF; Klein IA; Murcko MA
    Nat Rev Drug Discov; 2022 Nov; 21(11):841-862. PubMed ID: 35974095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Molecule Tracking of RNA Polymerase In and Out of Condensates in Live Bacterial Cells.
    Parmar BS; Weber SC
    Methods Mol Biol; 2023; 2563():371-381. PubMed ID: 36227483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.