BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37669402)

  • 1. Printable Energy Storage: Stay or Go?
    Zou Y; Qiao C; Sun J
    ACS Nano; 2023 Sep; 17(18):17624-17633. PubMed ID: 37669402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of 3D Printing Methods and Materials for Electrochemical Energy Storage.
    Egorov V; Gulzar U; Zhang Y; Breen S; O'Dwyer C
    Adv Mater; 2020 Jul; 32(29):e2000556. PubMed ID: 32510631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances and perspectives of 3D printed micro-supercapacitors: from design to smart integrated devices.
    Zong W; Ouyang Y; Miao YE; Liu T; Lai F
    Chem Commun (Camb); 2022 Feb; 58(13):2075-2095. PubMed ID: 35048921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Ink Writing 3D Printing for High-Performance Electrochemical Energy Storage Devices: A Minireview.
    Zeng L; Ling S; Du D; He H; Li X; Zhang C
    Adv Sci (Weinh); 2023 Nov; 10(32):e2303716. PubMed ID: 37740446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Inks for Printable Energy Storage Applications based on 2 D Materials.
    Wang L; Chen S; Shu T; Hu X
    ChemSusChem; 2020 Mar; 13(6):1330-1353. PubMed ID: 31373172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress in 3D Printing of Carbon Materials for Energy-Related Applications.
    Fu K; Yao Y; Dai J; Hu L
    Adv Mater; 2017 Mar; 29(9):. PubMed ID: 27982475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Printable devices for neurotechnology.
    Matta R; Moreau D; O'Connor R
    Front Neurosci; 2024; 18():1332827. PubMed ID: 38440397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Materials Properties of Printable Edible Inks and Printing Parameters Optimization during 3D Printing: a review.
    Feng C; Zhang M; Bhandari B
    Crit Rev Food Sci Nutr; 2019; 59(19):3074-3081. PubMed ID: 29856675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Printable Electrically Conductive Hydrogel Scaffolds for Biomedical Applications: A Review.
    Athukorala SS; Tran TS; Balu R; Truong VK; Chapman J; Dutta NK; Roy Choudhury N
    Polymers (Basel); 2021 Feb; 13(3):. PubMed ID: 33540900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Printable Smart Materials and Devices: Strategies and Applications.
    Su M; Song Y
    Chem Rev; 2022 Mar; 122(5):5144-5164. PubMed ID: 34415152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inkjet-Printing Technology for Supercapacitor Application: Current State and Perspectives.
    Sajedi-Moghaddam A; Rahmanian E; Naseri N
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):34487-34504. PubMed ID: 32628006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The status and challenging perspectives of 3D-printed micro-batteries.
    Ma J; Zheng S; Fu Y; Wang X; Qin J; Wu ZS
    Chem Sci; 2024 Apr; 15(15):5451-5481. PubMed ID: 38638219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current Status in the Utilization of Biobased Polymers for 3D Printing Process: A Systematic Review of the Materials, Processes, and Challenges.
    Shahbazi M; Jäger H
    ACS Appl Bio Mater; 2021 Jan; 4(1):325-369. PubMed ID: 35014287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Printing of NiCoP/Ti
    Yu L; Li W; Wei C; Yang Q; Shao Y; Sun J
    Nanomicro Lett; 2020 Jul; 12(1):143. PubMed ID: 34138137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalable Salt-Templated Synthesis of Nitrogen-Doped Graphene Nanosheets toward Printable Energy Storage.
    Wei N; Yu L; Sun Z; Song Y; Wang M; Tian Z; Xia Y; Cai J; Li YY; Zhao L; Li Q; Rümmeli MH; Sun J; Liu Z
    ACS Nano; 2019 Jul; 13(7):7517-7526. PubMed ID: 31150583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Printed Nitrogen-Doped Thick Carbon Architectures for Supercapacitor: Ink Rheology and Electrochemical Performance.
    Zhou G; Li MC; Liu C; Liu C; Li Z; Mei C
    Adv Sci (Weinh); 2023 Apr; 10(10):e2206320. PubMed ID: 36748294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A self-healing hydrogel and injectable cryogel of gelatin methacryloyl-polyurethane double network for 3D printing.
    Cheng QP; Hsu SH
    Acta Biomater; 2023 Jul; 164():124-138. PubMed ID: 37088162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries.
    Fu K; Wang Y; Yan C; Yao Y; Chen Y; Dai J; Lacey S; Wang Y; Wan J; Li T; Wang Z; Xu Y; Hu L
    Adv Mater; 2016 Apr; 28(13):2587-94. PubMed ID: 26833897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Printed Supercapacitor Exploiting PEDOT-Based Resin and Polymer Gel Electrolyte.
    Bertana V; Scordo G; Camilli E; Ge L; Zaccagnini P; Lamberti A; Marasso SL; Scaltrito L
    Polymers (Basel); 2023 Jun; 15(12):. PubMed ID: 37376303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Progress in Materials and Devices toward Printable and Flexible Sensors.
    Rim YS; Bae SH; Chen H; De Marco N; Yang Y
    Adv Mater; 2016 Jun; 28(22):4415-40. PubMed ID: 26898945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.