BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37669402)

  • 21. Custom 3D Printable Silicones with Tunable Stiffness.
    Durban MM; Lenhardt JM; Wu AS; Small W; Bryson TM; Perez-Perez L; Nguyen DT; Gammon S; Smay JE; Duoss EB; Lewicki JP; Wilson TS
    Macromol Rapid Commun; 2018 Feb; 39(4):. PubMed ID: 29210493
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extrusion-Based 3D Printing of Hierarchically Porous Advanced Battery Electrodes.
    Lacey SD; Kirsch DJ; Li Y; Morgenstern JT; Zarket BC; Yao Y; Dai J; Garcia LQ; Liu B; Gao T; Xu S; Raghavan SR; Connell JW; Lin Y; Hu L
    Adv Mater; 2018 Mar; 30(12):e1705651. PubMed ID: 29380891
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Printing thermoelectric inks toward next-generation energy and thermal devices.
    Zeng M; Zavanelli D; Chen J; Saeidi-Javash M; Du Y; LeBlanc S; Snyder GJ; Zhang Y
    Chem Soc Rev; 2022 Jan; 51(2):485-512. PubMed ID: 34761784
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Additive-free MXene inks and direct printing of micro-supercapacitors.
    Zhang CJ; McKeon L; Kremer MP; Park SH; Ronan O; Seral-Ascaso A; Barwich S; Coileáin CÓ; McEvoy N; Nerl HC; Anasori B; Coleman JN; Gogotsi Y; Nicolosi V
    Nat Commun; 2019 Apr; 10(1):1795. PubMed ID: 30996224
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A 3D-Printed Proton Pseudocapacitor with Ultrahigh Mass Loading and Areal Energy Density for Fast Energy Storage at Low Temperature.
    Zhang M; Xu T; Wang D; Yao T; Xu Z; Liu Q; Shen L; Yu Y
    Adv Mater; 2023 Jun; 35(23):e2209963. PubMed ID: 36626913
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D Printing for Solid-State Energy Storage.
    Tian X; Xu B
    Small Methods; 2021 Dec; 5(12):e2100877. PubMed ID: 34928040
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toward High Areal Energy and Power Density Electrode for Li-Ion Batteries via Optimized 3D Printing Approach.
    Wang J; Sun Q; Gao X; Wang C; Li W; Holness FB; Zheng M; Li R; Price AD; Sun X; Sham TK; Sun X
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):39794-39801. PubMed ID: 30372018
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elevated-Temperature 3D Printing of Hybrid Solid-State Electrolyte for Li-Ion Batteries.
    Cheng M; Jiang Y; Yao W; Yuan Y; Deivanayagam R; Foroozan T; Huang Z; Song B; Rojaee R; Shokuhfar T; Pan Y; Lu J; Shahbazian-Yassar R
    Adv Mater; 2018 Sep; 30(39):e1800615. PubMed ID: 30132998
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rheology as a Tool for Fine-Tuning the Properties of Printable Bioinspired Gels.
    Bercea M
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985738
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional inks and extrusion-based 3D printing of 2D materials: a review of current research and applications.
    Hassan K; Nine MJ; Tung TT; Stanley N; Yap PL; Rastin H; Yu L; Losic D
    Nanoscale; 2020 Oct; 12(37):19007-19042. PubMed ID: 32945332
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Printability assessment of psyllium husk (isabgol)/gelatin blends using rheological and mechanical properties.
    Agarwal PS; Poddar S; Varshney N; Sahi AK; Vajanthri KY; Yadav K; Parmar AS; Mahto SK
    J Biomater Appl; 2021 Apr; 35(9):1132-1142. PubMed ID: 33377809
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D Printing for Electrochemical Energy Applications.
    Browne MP; Redondo E; Pumera M
    Chem Rev; 2020 Mar; 120(5):2783-2810. PubMed ID: 32049499
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intrinsically Stretchable and Printable Lithium-Ion Battery for Free-Form Configuration.
    Hong SY; Jee SM; Ko Y; Cho J; Lee KH; Yeom B; Kim H; Son JG
    ACS Nano; 2022 Feb; 16(2):2271-2281. PubMed ID: 35060720
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inkjet-Printed Electrodes on A4 Paper Substrates for Low-Cost, Disposable, and Flexible Asymmetric Supercapacitors.
    Sundriyal P; Bhattacharya S
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38507-38521. PubMed ID: 28991438
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Printable biosensors towards next-generation point-of-care testing: paper substrate as an example.
    Liu Y; Lu S; Zhang Z; Yang Z; Cui X; Liu G
    Lab Chip; 2023 Jul; 23(15):3328-3352. PubMed ID: 37439827
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Emerging 4D Printing Strategies for Next-Generation Tissue Regeneration and Medical Devices.
    Wang Y; Cui H; Esworthy T; Mei D; Wang Y; Zhang LG
    Adv Mater; 2022 May; 34(20):e2109198. PubMed ID: 34951494
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D Printing of Porous Nitrogen-Doped Ti
    Fan Z; Wei C; Yu L; Xia Z; Cai J; Tian Z; Zou G; Dou SX; Sun J
    ACS Nano; 2020 Jan; 14(1):867-876. PubMed ID: 31898892
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent Advancement of Emerging Nano Copper-Based Printable Flexible Hybrid Electronics.
    Li Z; Chang S; Khuje S; Ren S
    ACS Nano; 2021 Apr; 15(4):6211-6232. PubMed ID: 33834763
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional printing of black phosphorous/polypyrrole electrode for energy storage using thermoresponsive ink.
    Xing R; Xia Y; Huang R; Qi W; Su R; He Z
    Chem Commun (Camb); 2020 Mar; 56(21):3115-3118. PubMed ID: 32091042
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Elaborate Control of Inkjet Printer for Fabrication of Chip-based Supercapacitors.
    Choi S; Kang J; Jang S; Eom H; Kwon O; Shin J; Nam I
    J Vis Exp; 2021 Nov; (177):. PubMed ID: 34927606
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.