BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37669475)

  • 1. 4D Printing of Biocompatible Scaffolds via
    Luo K; Wang L; Wang MX; Du R; Tang L; Yang KK; Wang YZ
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):44373-44383. PubMed ID: 37669475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications.
    Miao S; Zhu W; Castro NJ; Leng J; Zhang LG
    Tissue Eng Part C Methods; 2016 Oct; 22(10):952-963. PubMed ID: 28195832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Digital light 4D printing of bioresorbable shape memory elastomers for personalized biomedical implantation.
    Mahjoubnia A; Cai D; Wu Y; King SD; Torkian P; Chen AC; Talaie R; Chen SY; Lin J
    Acta Biomater; 2024 Mar; 177():165-177. PubMed ID: 38354873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research Progress of Shape Memory Polymer and 4D Printing in Biomedical Application.
    Zhao W; Yue C; Liu L; Liu Y; Leng J
    Adv Healthc Mater; 2023 Jun; 12(16):e2201975. PubMed ID: 36520058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programmable 4D Printing of Photoactive Shape Memory Composite Structures.
    Deng Y; Zhang F; Jiang M; Liu Y; Yuan H; Leng J
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):42568-42577. PubMed ID: 36097702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Four-Dimensional Printing and Shape Memory Materials in Bone Tissue Engineering.
    Zhang X; Yang Y; Yang Z; Ma R; Aimaijiang M; Xu J; Zhang Y; Zhou Y
    Int J Mol Sci; 2023 Jan; 24(1):. PubMed ID: 36614258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 4D printing of biocompatible, hierarchically porous shape memory polymeric structures.
    Bond G; Mahjoubnia A; Zhao W; King SD; Chen SY; Lin J
    Biomater Adv; 2023 Oct; 153():213575. PubMed ID: 37557033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Biocompatible 4D Printing Shape Memory Polymer as Emerging Strategy for Fabrication of Deployable Medical Devices.
    He W; Zhou D; Gu H; Qu R; Cui C; Zhou Y; Wang Y; Zhang X; Wang Q; Wang T; Zhang Y
    Macromol Rapid Commun; 2023 Jan; 44(2):e2200553. PubMed ID: 36029168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid Fabrication of Anatomically-Shaped Bone Scaffolds Using Indirect 3D Printing and Perfusion Techniques.
    Grottkau BE; Hui Z; Yao Y; Pang Y
    Int J Mol Sci; 2020 Jan; 21(1):. PubMed ID: 31906530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Additive manufacturing of PLA-Mg composite scaffolds for hard tissue engineering applications.
    Bakhshi R; Mohammadi-Zerankeshi M; Mehrabi-Dehdezi M; Alizadeh R; Labbaf S; Abachi P
    J Mech Behav Biomed Mater; 2023 Feb; 138():105655. PubMed ID: 36621086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile manufacturing of fused-deposition modeled composite scaffolds for tissue engineering-an embedding model with plasticity for incorporation of additives.
    Manjunath KS; Sridhar K; Gopinath V; Sankar K; Sundaram A; Gupta N; Shiek ASSJ; Shantanu PS
    Biomed Mater; 2020 Dec; 16(1):015028. PubMed ID: 33331292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smart implants: 4D-printed shape-morphing scaffolds for medical implantation.
    Qu G; Huang J; Gu G; Li Z; Wu X; Ren J
    Int J Bioprint; 2023; 9(5):764. PubMed ID: 37457930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 4D Thermo-Responsive Smart hiPSC-CM Cardiac Construct for Myocardial Cell Therapy.
    Hann SY; Cui H; Esworthy T; Zhang LG
    Int J Nanomedicine; 2023; 18():1809-1821. PubMed ID: 37051312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 4D polycarbonates via stereolithography as scaffolds for soft tissue repair.
    Weems AC; Arno MC; Yu W; Huckstepp RTR; Dove AP
    Nat Commun; 2021 Jul; 12(1):3771. PubMed ID: 34226548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 4D Printed Cardiac Construct with Aligned Myofibers and Adjustable Curvature for Myocardial Regeneration.
    Wang Y; Cui H; Wang Y; Xu C; Esworthy TJ; Hann SY; Boehm M; Shen YL; Mei D; Zhang LG
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12746-12758. PubMed ID: 33405502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shape Memory Effect of Four-Dimensional Printed Polylactic Acid-Based Scaffold with Nature-Inspired Structure.
    Kumar M; Sharma V
    3D Print Addit Manuf; 2024 Feb; 11(1):10-23. PubMed ID: 38389686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a plasma-based 3D printing system for enhancing the biocompatibility of 3D scaffold.
    Kim SH; Lee JS; Lee SJ; Nah H; Min SJ; Moon HJ; Bang JB; Kim HJ; Kim WJ; Kwon IK; Heo DN
    Biofabrication; 2023 Jun; 15(3):. PubMed ID: 37336204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harnessing 4D Printing Bioscaffolds for Advanced Orthopedics.
    Chen X; Han S; Wu W; Wu Z; Yuan Y; Wu J; Liu C
    Small; 2022 Sep; 18(36):e2106824. PubMed ID: 35060321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 4D printing: Perspectives for the production of sustainable plastics for agriculture.
    Maraveas C; Bayer IS; Bartzanas T
    Biotechnol Adv; 2022; 54():107785. PubMed ID: 34111517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melt electrowriting of a biocompatible photo-crosslinkable poly(D,L-lactic acid)/poly(ε-caprolactone)-based material with tunable mechanical and functionalization properties.
    Darroch C; Asaro GA; Gréant C; Suku M; Pien N; van Vlierberghe S; Monaghan MG
    J Biomed Mater Res A; 2023 Jun; 111(6):851-862. PubMed ID: 36951312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.