These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 37669915)
1. 3D Bioprinting of Acellular Corneal Stromal Scaffolds with a Low Cost Modified 3D Printer: A Feasibility Study. Gingras AA; Jansen PA; Smith C; Zhang X; Niu Y; Zhao Y; Roberts CJ; Herderick ED; Swindle-Reilly KE Curr Eye Res; 2023 Dec; 48(12):1112-1121. PubMed ID: 37669915 [TBL] [Abstract][Full Text] [Related]
2. Bioprinting of anisotropic functional corneal stroma using mechanically robust multi-material bioink based on decellularized cornea matrix. Ghosh A; Bera AK; Singh V; Basu S; Pati F Biomater Adv; 2024 Dec; 165():214007. PubMed ID: 39216318 [TBL] [Abstract][Full Text] [Related]
3. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Sorkio A; Koch L; Koivusalo L; Deiwick A; Miettinen S; Chichkov B; Skottman H Biomaterials; 2018 Jul; 171():57-71. PubMed ID: 29684677 [TBL] [Abstract][Full Text] [Related]
4. Stereolithography 3D Bioprinting Method for Fabrication of Human Corneal Stroma Equivalent. Mahdavi SS; Abdekhodaie MJ; Kumar H; Mashayekhan S; Baradaran-Rafii A; Kim K Ann Biomed Eng; 2020 Jul; 48(7):1955-1970. PubMed ID: 32504140 [TBL] [Abstract][Full Text] [Related]
5. Hyaluronic acid based next generation bioink for 3D bioprinting of human stem cell derived corneal stromal model with innervation. Mörö A; Samanta S; Honkamäki L; Rangasami VK; Puistola P; Kauppila M; Narkilahti S; Miettinen S; Oommen O; Skottman H Biofabrication; 2022 Dec; 15(1):. PubMed ID: 36579828 [TBL] [Abstract][Full Text] [Related]
6. High-throughput 3D bioprinting of corneal stromal equivalents. Kutlehria S; Dinh TC; Bagde A; Patel N; Gebeyehu A; Singh M J Biomed Mater Res B Appl Biomater; 2020 Oct; 108(7):2981-2994. PubMed ID: 32386281 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of GelMA - Agarose Based 3D Bioprinted Photocurable Hydrogel with In Vitro Cytocompatibility and Cells Mirroring Natural Keratocytes for Corneal Stromal Regeneration. Vijayaraghavan R; Loganathan S; Valapa RB Macromol Biosci; 2024 Oct; 24(10):e2400136. PubMed ID: 39096155 [TBL] [Abstract][Full Text] [Related]
8. 3D bioprinting of stromal cells-laden artificial cornea based on visible light-crosslinkable bioinks forming multilength networks. Lee GW; Chandrasekharan A; Roy S; Thamarappalli A; Mahaling B; Lee H; Seong KY; Ghosh S; Yang SY Biofabrication; 2024 Apr; 16(3):. PubMed ID: 38507802 [TBL] [Abstract][Full Text] [Related]
9. 3D bioprinting of a corneal stroma equivalent. Isaacson A; Swioklo S; Connon CJ Exp Eye Res; 2018 Aug; 173():188-193. PubMed ID: 29772228 [TBL] [Abstract][Full Text] [Related]
10. Alginate dependent changes of physical properties in 3D bioprinted cell-laden porous scaffolds affect cell viability and cell morphology. Zhang J; Wehrle E; Vetsch JR; Paul GR; Rubert M; Müller R Biomed Mater; 2019 Sep; 14(6):065009. PubMed ID: 31426033 [TBL] [Abstract][Full Text] [Related]
11. Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting. Kim MH; Lee YW; Jung WK; Oh J; Nam SY J Mech Behav Biomed Mater; 2019 Oct; 98():187-194. PubMed ID: 31252328 [TBL] [Abstract][Full Text] [Related]
12. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. Giuseppe MD; Law N; Webb B; A Macrae R; Liew LJ; Sercombe TB; Dilley RJ; Doyle BJ J Mech Behav Biomed Mater; 2018 Mar; 79():150-157. PubMed ID: 29304429 [TBL] [Abstract][Full Text] [Related]
14. Novel strategy for multi-material 3D bioprinting of human stem cell based corneal stroma with heterogenous design. Puistola P; Miettinen S; Skottman H; Mörö A Mater Today Bio; 2024 Feb; 24():100924. PubMed ID: 38226015 [TBL] [Abstract][Full Text] [Related]
15. Biopolymeric corneal lenticules by digital light processing based bioprinting: a dynamic substitute for corneal transplant. Bhutani U; Dey N; Chowdhury SK; Waghmare N; Mahapatra RD; Selvakumar K; Chandru A; Bhowmick T; Agrawal P Biomed Mater; 2024 Mar; 19(3):. PubMed ID: 38471165 [TBL] [Abstract][Full Text] [Related]
16. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments. Liu W; Zhong Z; Hu N; Zhou Y; Maggio L; Miri AK; Fragasso A; Jin X; Khademhosseini A; Zhang YS Biofabrication; 2018 Jan; 10(2):024102. PubMed ID: 29176035 [TBL] [Abstract][Full Text] [Related]
17. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts. Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292 [TBL] [Abstract][Full Text] [Related]