These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 37669955)
1. SlWRKY16 and SlWRKY31 of tomato, negative regulators of plant defense, involved in susceptibility activation following root-knot nematode Meloidogyne javanica infection. Kumar A; Sichov N; Bucki P; Miyara SB Sci Rep; 2023 Sep; 13(1):14592. PubMed ID: 37669955 [TBL] [Abstract][Full Text] [Related]
2. SlWRKY45, nematode-responsive tomato WRKY gene, enhances susceptibility to the root knot nematode; M. javanica infection. Chinnapandi B; Bucki P; Braun Miyara S Plant Signal Behav; 2017 Dec; 12(12):e1356530. PubMed ID: 29271721 [TBL] [Abstract][Full Text] [Related]
3. Tomato SlWRKY3 acts as a positive regulator for resistance against the root-knot nematode Meloidogyne javanica by activating lipids and hormone-mediated defense-signaling pathways. Chinnapandi B; Bucki P; Fitoussi N; Kolomiets M; Borrego E; Braun Miyara S Plant Signal Behav; 2019; 14(6):1601951. PubMed ID: 31010365 [TBL] [Abstract][Full Text] [Related]
4. Bio-control agents activate plant immune response and prime susceptible tomato against root-knot nematodes. Molinari S; Leonetti P PLoS One; 2019; 14(12):e0213230. PubMed ID: 31794550 [TBL] [Abstract][Full Text] [Related]
6. Oxylipins are implicated as communication signals in tomato-root-knot nematode (Meloidogyne javanica) interaction. Fitoussi N; Borrego E; Kolomiets MV; Qing X; Bucki P; Sela N; Belausov E; Braun Miyara S Sci Rep; 2021 Jan; 11(1):326. PubMed ID: 33431951 [TBL] [Abstract][Full Text] [Related]
7. Meloidogyne javanica fatty acid- and retinol-binding protein (Mj-FAR-1) regulates expression of lipid-, cell wall-, stress- and phenylpropanoid-related genes during nematode infection of tomato. Iberkleid I; Sela N; Brown Miyara S BMC Genomics; 2015 Apr; 16(1):272. PubMed ID: 25886179 [TBL] [Abstract][Full Text] [Related]
8. Two Candidate Kumar A; Fitoussi N; Sanadhya P; Sichov N; Bucki P; Bornstein M; Belausuv E; Brown Miyara S Mol Plant Microbe Interact; 2023 Feb; 36(2):79-94. PubMed ID: 36324054 [TBL] [Abstract][Full Text] [Related]
9. First report of Hajihassani A; Ye W; Hampton BB J Nematol; 2019; 51():1-3. PubMed ID: 31088018 [TBL] [Abstract][Full Text] [Related]
10. Root infection by the nematode Meloidogyne incognita modulates leaf antiherbivore defenses and plant resistance to Spodoptera exigua. Mbaluto CM; Vergara F; van Dam NM; Martínez-Medina A J Exp Bot; 2021 Dec; 72(22):7909-7926. PubMed ID: 34545935 [TBL] [Abstract][Full Text] [Related]
11. Utilization of Cladophora glomerata extract nanoparticles as eco-nematicide and enhancing the defense responses of tomato plants infected by Meloidogyne javanica. Ghareeb RY; Alfy H; Fahmy AA; Ali HM; Abdelsalam NR Sci Rep; 2020 Nov; 10(1):19968. PubMed ID: 33203960 [TBL] [Abstract][Full Text] [Related]
12. Shifting from priming of salicylic acid- to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita. Martínez-Medina A; Fernandez I; Lok GB; Pozo MJ; Pieterse CM; Van Wees SC New Phytol; 2017 Feb; 213(3):1363-1377. PubMed ID: 27801946 [TBL] [Abstract][Full Text] [Related]
13. The soybean gene GmHsp22.4 is involved in the resistance response to Meloidogyne javanica in Arabidopsis thaliana. Hishinuma-Silva SM; Lopes-Caitar VS; Nomura RBG; Sercero BC; da Silva AG; da Cruz Gallo De Carvalho MC; de Oliveira Negrão Lopes I; Dias WP; Marcelino-Guimarães FC BMC Plant Biol; 2020 Nov; 20(1):535. PubMed ID: 33234121 [TBL] [Abstract][Full Text] [Related]
15. Induction of SA-signaling pathway and ethylene biosynthesis in Trichoderma harzianum-treated tomato plants after infection of the root-knot nematode Meloidogyne incognita. Leonetti P; Zonno MC; Molinari S; Altomare C Plant Cell Rep; 2017 Apr; 36(4):621-631. PubMed ID: 28239746 [TBL] [Abstract][Full Text] [Related]
16. Effects of jasmonate-induced defenses on root-knot nematode infection of resistant and susceptible tomato cultivars. Cooper WR; Jia L; Goggin L J Chem Ecol; 2005 Sep; 31(9):1953-67. PubMed ID: 16132206 [TBL] [Abstract][Full Text] [Related]
17. Expression of tomato salicylic acid (SA)-responsive pathogenesis-related genes in Mi-1-mediated and SA-induced resistance to root-knot nematodes. Molinari S; Fanelli E; Leonetti P Mol Plant Pathol; 2014 Apr; 15(3):255-64. PubMed ID: 24118790 [TBL] [Abstract][Full Text] [Related]
18. Benzothiadiazole effect in the compatible tomato-Meloidogyne incognita interaction: changes in giant cell development and priming of two root anionic peroxidases. Melillo MT; Leonetti P; Veronico P Planta; 2014 Oct; 240(4):841-54. PubMed ID: 25085693 [TBL] [Abstract][Full Text] [Related]
19. Expression of a plant expansin is involved in the establishment of root knot nematode parasitism in tomato. Gal TZ; Aussenberg ER; Burdman S; Kapulnik Y; Koltai H Planta; 2006 Jun; 224(1):155-62. PubMed ID: 16395582 [TBL] [Abstract][Full Text] [Related]
20. Phenylacetic acid-producing Rhizoctonia solani represses the biosynthesis of nematicidal compounds in vitro and influences biocontrol of Meloidogyne incognita in tomato by Pseudomonas fluorescens strain CHA0 and its GM derivatives. Siddiqui IA; Shaukat SS J Appl Microbiol; 2005; 98(1):43-55. PubMed ID: 15610416 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]