These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37669957)

  • 1. Accurate GW frontier orbital energies of 134 kilo molecules.
    Fediai A; Reiser P; Peña JEO; Friederich P; Wenzel W
    Sci Data; 2023 Sep; 10(1):581. PubMed ID: 37669957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-Space Based Benchmark of G
    Gao W; Chelikowsky JR
    J Chem Theory Comput; 2019 Oct; 15(10):5299-5307. PubMed ID: 31424933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GW100: Benchmarking G0W0 for Molecular Systems.
    van Setten MJ; Caruso F; Sharifzadeh S; Ren X; Scheffler M; Liu F; Lischner J; Lin L; Deslippe JR; Louie SG; Yang C; Weigend F; Neaton JB; Evers F; Rinke P
    J Chem Theory Comput; 2015 Dec; 11(12):5665-87. PubMed ID: 26642984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the frontier orbital energies of imidazolium-based cations using machine learning.
    Dhakal P; Gassaway W; Shah JK
    J Chem Phys; 2023 Aug; 159(6):. PubMed ID: 37579028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MultiXC-QM9: Large dataset of molecular and reaction energies from multi-level quantum chemical methods.
    Nandi S; Vegge T; Bhowmik A
    Sci Data; 2023 Nov; 10(1):783. PubMed ID: 37938558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning Total Energies and Orbital Energies of Large Organic Molecules Using Hybridization of Molecular Fingerprints.
    Rahaman O; Gagliardi A
    J Chem Inf Model; 2020 Dec; 60(12):5971-5983. PubMed ID: 33118351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transferable Multilevel Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multitask Learning.
    Liu Z; Lin L; Jia Q; Cheng Z; Jiang Y; Guo Y; Ma J
    J Chem Inf Model; 2021 Mar; 61(3):1066-1082. PubMed ID: 33629839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orbital energies and negative electron affinities from density functional theory: Insight from the integer discontinuity.
    Teale AM; De Proft F; Tozer DJ
    J Chem Phys; 2008 Jul; 129(4):044110. PubMed ID: 18681637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning Methods to Predict Density Functional Theory B3LYP Energies of HOMO and LUMO Orbitals.
    Pereira F; Xiao K; Latino DA; Wu C; Zhang Q; Aires-de-Sousa J
    J Chem Inf Model; 2017 Jan; 57(1):11-21. PubMed ID: 28033004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep transfer learning for predicting frontier orbital energies of organic materials using small data and its application to porphyrin photocatalysts.
    Su A; Zhang X; Zhang C; Ding D; Yang YF; Wang K; She YB
    Phys Chem Chem Phys; 2023 Apr; 25(15):10536-10549. PubMed ID: 36987933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical diversity in molecular orbital energy predictions with kernel ridge regression.
    Stuke A; Todorović M; Rupp M; Kunkel C; Ghosh K; Himanen L; Rinke P
    J Chem Phys; 2019 May; 150(20):204121. PubMed ID: 31153160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-Scaling
    Wilhelm J; Seewald P; Golze D
    J Chem Theory Comput; 2021 Mar; 17(3):1662-1677. PubMed ID: 33621085
    [No Abstract]   [Full Text] [Related]  

  • 13. Low-Order Scaling
    Förster A; Visscher L
    J Chem Theory Comput; 2020 Dec; 16(12):7381-7399. PubMed ID: 33174743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selected machine learning of HOMO-LUMO gaps with improved data-efficiency.
    Mazouin B; Schöpfer AA; von Lilienfeld OA
    Mater Adv; 2022 Nov; 3(22):8306-8316. PubMed ID: 36561279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An orbital-based representation for accurate quantum machine learning.
    Karandashev K; von Lilienfeld OA
    J Chem Phys; 2022 Mar; 156(11):114101. PubMed ID: 35317562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error.
    Faber FA; Hutchison L; Huang B; Gilmer J; Schoenholz SS; Dahl GE; Vinyals O; Kearnes S; Riley PF; von Lilienfeld OA
    J Chem Theory Comput; 2017 Nov; 13(11):5255-5264. PubMed ID: 28926232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benchmark of GW Approaches for the GW100 Test Set.
    Caruso F; Dauth M; van Setten MJ; Rinke P
    J Chem Theory Comput; 2016 Oct; 12(10):5076-5087. PubMed ID: 27631585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy Component Analysis for Electronically Excited States of Molecules: Why the Lowest Excited State Is Not Always the HOMO/LUMO Transition.
    Kimber P; Plasser F
    J Chem Theory Comput; 2023 Apr; 19(8):2340-2352. PubMed ID: 37022304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data-driven tailoring of molecular dipole polarizability and frontier orbital energies in chemical compound space.
    Góger S; Sandonas LM; Müller C; Tkatchenko A
    Phys Chem Chem Phys; 2023 Aug; 25(33):22211-22222. PubMed ID: 37566426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QM-sym, a symmetrized quantum chemistry database of 135 kilo molecules.
    Liang J; Xu Y; Liu R; Zhu X
    Sci Data; 2019 Oct; 6(1):213. PubMed ID: 31628326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.