BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37669957)

  • 1. Accurate GW frontier orbital energies of 134 kilo molecules.
    Fediai A; Reiser P; Peña JEO; Friederich P; Wenzel W
    Sci Data; 2023 Sep; 10(1):581. PubMed ID: 37669957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-Space Based Benchmark of G
    Gao W; Chelikowsky JR
    J Chem Theory Comput; 2019 Oct; 15(10):5299-5307. PubMed ID: 31424933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GW100: Benchmarking G0W0 for Molecular Systems.
    van Setten MJ; Caruso F; Sharifzadeh S; Ren X; Scheffler M; Liu F; Lischner J; Lin L; Deslippe JR; Louie SG; Yang C; Weigend F; Neaton JB; Evers F; Rinke P
    J Chem Theory Comput; 2015 Dec; 11(12):5665-87. PubMed ID: 26642984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the frontier orbital energies of imidazolium-based cations using machine learning.
    Dhakal P; Gassaway W; Shah JK
    J Chem Phys; 2023 Aug; 159(6):. PubMed ID: 37579028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MultiXC-QM9: Large dataset of molecular and reaction energies from multi-level quantum chemical methods.
    Nandi S; Vegge T; Bhowmik A
    Sci Data; 2023 Nov; 10(1):783. PubMed ID: 37938558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning Total Energies and Orbital Energies of Large Organic Molecules Using Hybridization of Molecular Fingerprints.
    Rahaman O; Gagliardi A
    J Chem Inf Model; 2020 Dec; 60(12):5971-5983. PubMed ID: 33118351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transferable Multilevel Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multitask Learning.
    Liu Z; Lin L; Jia Q; Cheng Z; Jiang Y; Guo Y; Ma J
    J Chem Inf Model; 2021 Mar; 61(3):1066-1082. PubMed ID: 33629839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orbital energies and negative electron affinities from density functional theory: Insight from the integer discontinuity.
    Teale AM; De Proft F; Tozer DJ
    J Chem Phys; 2008 Jul; 129(4):044110. PubMed ID: 18681637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning Methods to Predict Density Functional Theory B3LYP Energies of HOMO and LUMO Orbitals.
    Pereira F; Xiao K; Latino DA; Wu C; Zhang Q; Aires-de-Sousa J
    J Chem Inf Model; 2017 Jan; 57(1):11-21. PubMed ID: 28033004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep transfer learning for predicting frontier orbital energies of organic materials using small data and its application to porphyrin photocatalysts.
    Su A; Zhang X; Zhang C; Ding D; Yang YF; Wang K; She YB
    Phys Chem Chem Phys; 2023 Apr; 25(15):10536-10549. PubMed ID: 36987933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical diversity in molecular orbital energy predictions with kernel ridge regression.
    Stuke A; Todorović M; Rupp M; Kunkel C; Ghosh K; Himanen L; Rinke P
    J Chem Phys; 2019 May; 150(20):204121. PubMed ID: 31153160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-Scaling
    Wilhelm J; Seewald P; Golze D
    J Chem Theory Comput; 2021 Mar; 17(3):1662-1677. PubMed ID: 33621085
    [No Abstract]   [Full Text] [Related]  

  • 13. Selected machine learning of HOMO-LUMO gaps with improved data-efficiency.
    Mazouin B; Schöpfer AA; von Lilienfeld OA
    Mater Adv; 2022 Nov; 3(22):8306-8316. PubMed ID: 36561279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-Order Scaling
    Förster A; Visscher L
    J Chem Theory Comput; 2020 Dec; 16(12):7381-7399. PubMed ID: 33174743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An orbital-based representation for accurate quantum machine learning.
    Karandashev K; von Lilienfeld OA
    J Chem Phys; 2022 Mar; 156(11):114101. PubMed ID: 35317562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error.
    Faber FA; Hutchison L; Huang B; Gilmer J; Schoenholz SS; Dahl GE; Vinyals O; Kearnes S; Riley PF; von Lilienfeld OA
    J Chem Theory Comput; 2017 Nov; 13(11):5255-5264. PubMed ID: 28926232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benchmark of GW Approaches for the GW100 Test Set.
    Caruso F; Dauth M; van Setten MJ; Rinke P
    J Chem Theory Comput; 2016 Oct; 12(10):5076-5087. PubMed ID: 27631585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy Component Analysis for Electronically Excited States of Molecules: Why the Lowest Excited State Is Not Always the HOMO/LUMO Transition.
    Kimber P; Plasser F
    J Chem Theory Comput; 2023 Apr; 19(8):2340-2352. PubMed ID: 37022304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QM-sym, a symmetrized quantum chemistry database of 135 kilo molecules.
    Liang J; Xu Y; Liu R; Zhu X
    Sci Data; 2019 Oct; 6(1):213. PubMed ID: 31628326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data-driven tailoring of molecular dipole polarizability and frontier orbital energies in chemical compound space.
    Góger S; Sandonas LM; Müller C; Tkatchenko A
    Phys Chem Chem Phys; 2023 Aug; 25(33):22211-22222. PubMed ID: 37566426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.