These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37669957)

  • 41. Many Molecular Properties from One Kernel in Chemical Space.
    Ramakrishnan R; von Lilienfeld OA
    Chimia (Aarau); 2015; 69(4):182-6. PubMed ID: 26672132
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Zn Coordination Chemistry:  Development of Benchmark Suites for Geometries, Dipole Moments, and Bond Dissociation Energies and Their Use To Test and Validate Density Functionals and Molecular Orbital Theory.
    Amin EA; Truhlar DG
    J Chem Theory Comput; 2008 Jan; 4(1):75-85. PubMed ID: 26619981
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Data related to conformation dependence of tyrosine binding on the surface of graphene: Bent prefers over parallel orientation.
    Daggag D; Lazare J; Dinadayalane T
    Data Brief; 2019 Oct; 26():104420. PubMed ID: 31534991
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An optimally tuned range-separated hybrid starting point for ab initio GW plus Bethe-Salpeter equation calculations of molecules.
    McKeon CA; Hamed SM; Bruneval F; Neaton JB
    J Chem Phys; 2022 Aug; 157(7):074103. PubMed ID: 35987597
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Physics-inspired machine learning of localized intensive properties.
    Chen K; Kunkel C; Cheng B; Reuter K; Margraf JT
    Chem Sci; 2023 May; 14(18):4913-4922. PubMed ID: 37181767
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Unphysical Discontinuities in GW Methods.
    Véril M; Romaniello P; Berger JA; Loos PF
    J Chem Theory Comput; 2018 Oct; 14(10):5220-5228. PubMed ID: 30212627
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Accuracy Assessment of GW Starting Points for Calculating Molecular Excitation Energies Using the Bethe-Salpeter Formalism.
    Gui X; Holzer C; Klopper W
    J Chem Theory Comput; 2018 Apr; 14(4):2127-2136. PubMed ID: 29499116
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cyclic Voltammetric Study of 3,5-Diaryl-1-phenyl-2-pyrazolines.
    Soltani M; Minakar R; Memarian HR; Sabzyan H
    J Phys Chem A; 2019 Apr; 123(13):2820-2830. PubMed ID: 30835472
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tailoring the Weight of Surface and Intralayer Edge States to Control LUMO Energies.
    Finkelmeyer SJ; Askins EJ; Eichhorn J; Ghosh S; Siegmund C; Täuscher E; Dellith A; Hupfer ML; Dellith J; Ritter U; Strzalka J; Glusac K; Schacher FH; Presselt M
    Adv Mater; 2023 Oct; 35(40):e2305006. PubMed ID: 37572365
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Machine learning the frontier orbital energies of SubPc based triads.
    Storm FE; Folkmann LM; Hansen T; Mikkelsen KV
    J Mol Model; 2022 Sep; 28(10):313. PubMed ID: 36098806
    [TBL] [Abstract][Full Text] [Related]  

  • 51. First-principles insights into interaction of CO, NO, and HCN with Ag8.
    Torbatian Z; Hashemifar SJ; Akbarzadeh H
    J Chem Phys; 2014 Feb; 140(8):084314. PubMed ID: 24588176
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Natural virtual orbitals for the GW method in the random-phase approximation and beyond.
    Monzel L; Holzer C; Klopper W
    J Chem Phys; 2023 Apr; 158(14):144102. PubMed ID: 37061489
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Density functional theory for comprehensive orbital energy calculations.
    Nakata A; Tsuneda T
    J Chem Phys; 2013 Aug; 139(6):064102. PubMed ID: 23947838
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Physical Meaning of Virtual Kohn-Sham Orbitals and Orbital Energies: An Ideal Basis for the Description of Molecular Excitations.
    van Meer R; Gritsenko OV; Baerends EJ
    J Chem Theory Comput; 2014 Oct; 10(10):4432-41. PubMed ID: 26588140
    [TBL] [Abstract][Full Text] [Related]  

  • 55. OrbNet: Deep learning for quantum chemistry using symmetry-adapted atomic-orbital features.
    Qiao Z; Welborn M; Anandkumar A; Manby FR; Miller TF
    J Chem Phys; 2020 Sep; 153(12):124111. PubMed ID: 33003742
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Theoretical Investigation of
    Hussein HA; Fadhil GF
    ACS Omega; 2023 Feb; 8(5):4937-4953. PubMed ID: 36777615
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Toward GW Calculations on Thousands of Atoms.
    Wilhelm J; Golze D; Talirz L; Hutter J; Pignedoli CA
    J Phys Chem Lett; 2018 Jan; 9(2):306-312. PubMed ID: 29280376
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effective one-particle energies from generalized Kohn-Sham random phase approximation: A direct approach for computing and analyzing core ionization energies.
    Voora VK; Galhenage R; Hemminger JC; Furche F
    J Chem Phys; 2019 Oct; 151(13):134106. PubMed ID: 31594336
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Graph-Based Approaches for Predicting Solvation Energy in Multiple Solvents: Open Datasets and Machine Learning Models.
    Ward L; Dandu N; Blaiszik B; Narayanan B; Assary RS; Redfern PC; Foster I; Curtiss LA
    J Phys Chem A; 2021 Jul; 125(27):5990-5998. PubMed ID: 34191512
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Designing small organic non-fullerene acceptor molecules with diflorobenzene or quinoline core and dithiophene donor moiety through density functional theory.
    Bary G; Ghani L; Jamil MI; Arslan M; Ahmed W; Ahmad A; Sajid M; Ahmad R; Huang D
    Sci Rep; 2021 Oct; 11(1):19683. PubMed ID: 34608168
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.