BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 37670027)

  • 1. Assessing the impact of turbulent kinetic energy boundary conditions on turbulent flow simulations using computational fluid dynamics.
    Jung EC; Lee GH; Shim EB; Ha H
    Sci Rep; 2023 Sep; 13(1):14638. PubMed ID: 37670027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of turbulent flow effects on the vessel wall using four-dimensional flow MRI.
    Ziegler M; Lantz J; Ebbers T; Dyverfeldt P
    Magn Reson Med; 2017 Jun; 77(6):2310-2319. PubMed ID: 27350049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro experiments on ICOSA6 4D flow MRI measurement for the quantification of velocity and turbulence parameters.
    Ha H; Park KJ; Dyverfeldt P; Ebbers T; Yang DH
    Magn Reson Imaging; 2020 Oct; 72():49-60. PubMed ID: 32619720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of patient-specific multipoint 4D flow MRI data of turbulent aortic flow downstream of stenotic valves.
    Dirix P; Buoso S; Peper ES; Kozerke S
    Sci Rep; 2022 Sep; 12(1):16004. PubMed ID: 36163357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the accuracy of viscous and turbulent loss quantification in stenotic aortic flow using phase-contrast MRI.
    Binter C; Gülan U; Holzner M; Kozerke S
    Magn Reson Med; 2016 Jul; 76(1):191-6. PubMed ID: 26258402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-Related Vascular Changes Affect Turbulence in Aortic Blood Flow.
    Ha H; Ziegler M; Welander M; Bjarnegård N; Carlhäll CJ; Lindenberger M; Länne T; Ebbers T; Dyverfeldt P
    Front Physiol; 2018; 9():36. PubMed ID: 29422871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical and experimental assessment of turbulent kinetic energy in an aortic coarctation.
    Lantz J; Ebbers T; Engvall J; Karlsson M
    J Biomech; 2013 Jul; 46(11):1851-8. PubMed ID: 23746596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Impact of Three-Dimensional Effects on the Simulation of Turbulence Kinetic Energy in a Major Alpine Valley.
    Goger B; Rotach MW; Gohm A; Fuhrer O; Stiperski I; Holtslag AAM
    Boundary Layer Meteorol; 2018; 168(1):1-27. PubMed ID: 30996389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of turbulent kinetic energy using 4D phase-contrast MRI: Effect of scan parameters and target vessel size.
    Ha H; Hwang D; Kim GB; Kweon J; Lee SJ; Baek J; Kim YH; Kim N; Yang DH
    Magn Reson Imaging; 2016 Jul; 34(6):715-723. PubMed ID: 26968139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on free stream turbulence as related to gas turbine heat transfer. A review of authors' past work and future implications.
    Yavuzkurt S; Iyer GR
    Ann N Y Acad Sci; 2001 May; 934():265-72. PubMed ID: 11460635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo validation of numerical prediction for turbulence intensity in an aortic coarctation.
    Arzani A; Dyverfeldt P; Ebbers T; Shadden SC
    Ann Biomed Eng; 2012 Apr; 40(4):860-70. PubMed ID: 22016327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Turbulent Intensity of Blood Flow in the Healthy Aorta Increases With Dobutamine Stress and is Related to Cardiac Output.
    Sundin J; Bustamante M; Ebbers T; Dyverfeldt P; Carlhäll CJ
    Front Physiol; 2022; 13():869701. PubMed ID: 35694404
    [No Abstract]   [Full Text] [Related]  

  • 13.
    Ha H; Huh HK; Park KJ; Dyverfeldt P; Ebbers T; Kim DH; Yang DH
    Front Bioeng Biotechnol; 2021; 9():774954. PubMed ID: 34950643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Assessment of Turbulence and Flow Eccentricity in an Aortic Coarctation: Impact of Virtual Interventions.
    Andersson M; Lantz J; Ebbers T; Karlsson M
    Cardiovasc Eng Technol; 2015 Sep; 6(3):281-93. PubMed ID: 26577361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Turbulent Kinetic Energy Measurement Using Phase Contrast MRI for Estimating the Post-Stenotic Pressure Drop: In Vitro Validation and Clinical Application.
    Ha H; Kim GB; Kweon J; Huh HK; Lee SJ; Koo HJ; Kang JW; Lim TH; Kim DH; Kim YH; Kim N; Yang DH
    PLoS One; 2016; 11(3):e0151540. PubMed ID: 26978529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Turbulence Effects in a Patient-Specific Aorta with Aortic Valve Stenosis.
    Manchester EL; Pirola S; Salmasi MY; O'Regan DP; Athanasiou T; Xu XY
    Cardiovasc Eng Technol; 2021 Aug; 12(4):438-453. PubMed ID: 33829405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Computational Methodologies for Accurate Prediction of Wall Shear Stress and Turbulence Parameters in a Patient-Specific Aorta.
    Manchester EL; Pirola S; Salmasi MY; O'Regan DP; Athanasiou T; Xu XY
    Front Bioeng Biotechnol; 2022; 10():836611. PubMed ID: 35402418
    [No Abstract]   [Full Text] [Related]  

  • 18. Turbulent finite element model applied for blood flow calculation in arterial bifurcation.
    Nikolić A; Topalović M; Simić V; Filipović N
    Comput Methods Programs Biomed; 2021 Sep; 209():106328. PubMed ID: 34407452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fundamentals of turbulent flow spectrum imaging.
    Dillinger H; McGrath C; Guenthner C; Kozerke S
    Magn Reson Med; 2022 Mar; 87(3):1231-1249. PubMed ID: 34786764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the limitations of partial Fourier acquisition in phase-contrast MRI of turbulent kinetic energy.
    Walheim J; Gotschy A; Kozerke S
    Magn Reson Med; 2019 Jan; 81(1):514-523. PubMed ID: 30265753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.