BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 37670028)

  • 21. Engineering the human gut commensal Bacteroides thetaiotaomicron with synthetic biology.
    Lai Y; Hayashi N; Lu TK
    Curr Opin Chem Biol; 2022 Oct; 70():102178. PubMed ID: 35759819
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The human symbiont Bacteroides thetaiotaomicron promotes diet-induced obesity by regulating host lipid metabolism.
    Cho SH; Cho YJ; Park JH
    J Microbiol; 2022 Jan; 60(1):118-127. PubMed ID: 34964947
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Biosynthesis of Lipooligosaccharide from
    Jacobson AN; Choudhury BP; Fischbach MA
    mBio; 2018 Mar; 9(2):. PubMed ID: 29535205
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Loss of
    McMillan AS; Foley MH; Perkins CE; Theriot CM
    bioRxiv; 2023 Jun; ():. PubMed ID: 37425690
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nutrient-dependent morphological variability of
    Rangarajan AA; Koropatkin NM; Biteen JS
    Microbiology (Reading); 2020 Jul; 166(7):624-628. PubMed ID: 32416743
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Loss of NHE3 alters gut microbiota composition and influences Bacteroides thetaiotaomicron growth.
    Engevik MA; Aihara E; Montrose MH; Shull GE; Hassett DJ; Worrell RT
    Am J Physiol Gastrointest Liver Physiol; 2013 Nov; 305(10):G697-711. PubMed ID: 24072680
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Growth of succinate consumer Dialister hominis is supported by Bacteroides thetaiotaomicron.
    Sakamoto M; Ikeyama N; Iino T; Ohkuma M
    Anaerobe; 2022 Oct; 77():102642. PubMed ID: 36113733
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic circuit design automation for the gut resident species Bacteroides thetaiotaomicron.
    Taketani M; Zhang J; Zhang S; Triassi AJ; Huang YJ; Griffith LG; Voigt CA
    Nat Biotechnol; 2020 Aug; 38(8):962-969. PubMed ID: 32231334
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A mathematical model of Bacteroides thetaiotaomicron, Methanobrevibacter smithii, and Eubacterium rectale interactions in the human gut.
    Adrian MA; Ayati BP; Mangalam AK
    Sci Rep; 2023 Dec; 13(1):21192. PubMed ID: 38040895
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polysaccharides catabolism by the human gut bacterium -
    Ye M; Yu J; Shi X; Zhu J; Gao X; Liu W
    Crit Rev Food Sci Nutr; 2021; 61(21):3569-3588. PubMed ID: 32779480
    [TBL] [Abstract][Full Text] [Related]  

  • 31.
    Béchon N; Mihajlovic J; Lopes AA; Vendrell-Fernández S; Deschamps J; Briandet R; Sismeiro O; Martin-Verstraete I; Dupuy B; Ghigo JM
    Proc Natl Acad Sci U S A; 2022 Feb; 119(7):. PubMed ID: 35145026
    [No Abstract]   [Full Text] [Related]  

  • 32. Anti-stress proteins produced by Bacteroides thetaiotaomicron after nutrient starvation.
    Hochart-Behra AC; Drobecq H; Tourret M; Dubreuil L; Behra-Miellet J
    Anaerobe; 2014 Aug; 28():18-23. PubMed ID: 24785350
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Putative Type V Pilus Contributes to Bacteroides thetaiotaomicron Biofilm Formation Capacity.
    Mihajlovic J; Bechon N; Ivanova C; Chain F; Almeida A; Langella P; Beloin C; Ghigo JM
    J Bacteriol; 2019 Sep; 201(18):. PubMed ID: 30833358
    [No Abstract]   [Full Text] [Related]  

  • 34. Carboxyspermidine decarboxylase of the prominent intestinal microbiota species Bacteroides thetaiotaomicron is required for spermidine biosynthesis and contributes to normal growth.
    Sakanaka M; Sugiyama Y; Kitakata A; Katayama T; Kurihara S
    Amino Acids; 2016 Oct; 48(10):2443-51. PubMed ID: 27118128
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutual Metabolic Interactions in Co-cultures of the Intestinal
    Bui TPN; Schols HA; Jonathan M; Stams AJM; de Vos WM; Plugge CM
    Front Microbiol; 2019; 10():2449. PubMed ID: 31736896
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic genetic adaptation of Bacteroides thetaiotaomicron during murine gut colonization.
    Kennedy MS; Zhang M; DeLeon O; Bissell J; Trigodet F; Lolans K; Temelkova S; Carroll KT; Fiebig A; Deutschbauer A; Sidebottom AM; Lake J; Henry C; Rice PA; Bergelson J; Chang EB
    Cell Rep; 2023 Aug; 42(8):113009. PubMed ID: 37598339
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A high-resolution transcriptome map identifies small RNA regulation of metabolism in the gut microbe Bacteroides thetaiotaomicron.
    Ryan D; Jenniches L; Reichardt S; Barquist L; Westermann AJ
    Nat Commun; 2020 Jul; 11(1):3557. PubMed ID: 32678091
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Xenosiderophore Utilization Promotes Bacteroides thetaiotaomicron Resilience during Colitis.
    Zhu W; Winter MG; Spiga L; Hughes ER; Chanin R; Mulgaonkar A; Pennington J; Maas M; Behrendt CL; Kim J; Sun X; Beiting DP; Hooper LV; Winter SE
    Cell Host Microbe; 2020 Mar; 27(3):376-388.e8. PubMed ID: 32075741
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative metabolomics of a xylose-utilizing Saccharomyces cerevisiae strain expressing the Bacteroides thetaiotaomicron xylose isomerase on glucose and xylose.
    Mert MJ; Rose SH; la Grange DC; Bamba T; Hasunuma T; Kondo A; van Zyl WH
    J Ind Microbiol Biotechnol; 2017 Oct; 44(10):1459-1470. PubMed ID: 28744577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lactoferrin and lactoferricin B reduce adhesion and biofilm formation in the intestinal symbionts Bacteroides fragilis and Bacteroides thetaiotaomicron.
    de Sá Almeida JS; de Oliveira Marre AT; Teixeira FL; Boente RF; Domingues RMCP; de Paula GR; Lobo LA
    Anaerobe; 2020 Aug; 64():102232. PubMed ID: 32634470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.