BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37670066)

  • 1. OCT-based deep-learning models for the identification of retinal key signs.
    Leandro I; Lorenzo B; Aleksandar M; Dario M; Rosa G; Agostino A; Daniele T
    Sci Rep; 2023 Sep; 13(1):14628. PubMed ID: 37670066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epiretinal Membrane Detection at the Ophthalmologist Level using Deep Learning of Optical Coherence Tomography.
    Lo YC; Lin KH; Bair H; Sheu WH; Chang CS; Shen YC; Hung CL
    Sci Rep; 2020 May; 10(1):8424. PubMed ID: 32439844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fully automated detection of retinal disorders by image-based deep learning.
    Li F; Chen H; Liu Z; Zhang X; Wu Z
    Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of Generative Adversarial Networks Model for Synthetic Optical Coherence Tomography Images of Retinal Disorders.
    Zheng C; Xie X; Zhou K; Chen B; Chen J; Ye H; Li W; Qiao T; Gao S; Yang J; Liu J
    Transl Vis Sci Technol; 2020 May; 9(2):29. PubMed ID: 32832202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic segmentation of multitype retinal fluid from optical coherence tomography images using semisupervised deep learning network.
    Li F; Pan W; Xiang W; Zou H
    Br J Ophthalmol; 2023 Sep; 107(9):1350-1355. PubMed ID: 35697498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-scale convolutional neural network for automated AMD classification using retinal OCT images.
    Sotoudeh-Paima S; Jodeiri A; Hajizadeh F; Soltanian-Zadeh H
    Comput Biol Med; 2022 May; 144():105368. PubMed ID: 35259614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy.
    Virgili G; Menchini F; Casazza G; Hogg R; Das RR; Wang X; Michelessi M
    Cochrane Database Syst Rev; 2015 Jan; 1(1):CD008081. PubMed ID: 25564068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated classification of normal and Stargardt disease optical coherence tomography images using deep learning.
    Shah M; Roomans Ledo A; Rittscher J
    Acta Ophthalmol; 2020 Sep; 98(6):e715-e721. PubMed ID: 31981283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications.
    Prahs P; Radeck V; Mayer C; Cvetkov Y; Cvetkova N; Helbig H; Märker D
    Graefes Arch Clin Exp Ophthalmol; 2018 Jan; 256(1):91-98. PubMed ID: 29127485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning-based Diagnosis of Glaucoma Using Wide-field Optical Coherence Tomography Images.
    Shin Y; Cho H; Jeong HC; Seong M; Choi JW; Lee WJ
    J Glaucoma; 2021 Sep; 30(9):803-812. PubMed ID: 33979115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning-Based System for Disease Screening and Pathologic Region Detection From Optical Coherence Tomography Images.
    Chen X; Xue Y; Wu X; Zhong Y; Rao H; Luo H; Weng Z
    Transl Vis Sci Technol; 2023 Jan; 12(1):29. PubMed ID: 36716039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attention-based deep learning system for automated diagnoses of age-related macular degeneration in optical coherence tomography images.
    Yan Y; Jin K; Gao Z; Huang X; Wang F; Wang Y; Ye J
    Med Phys; 2021 Sep; 48(9):4926-4934. PubMed ID: 34042194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated detection of a nonperfusion area caused by retinal vein occlusion in optical coherence tomography angiography images using deep learning.
    Nagasato D; Tabuchi H; Masumoto H; Enno H; Ishitobi N; Kameoka M; Niki M; Mitamura Y
    PLoS One; 2019; 14(11):e0223965. PubMed ID: 31697697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a deep learning algorithm for myopic maculopathy classification based on OCT images using transfer learning.
    He X; Ren P; Lu L; Tang X; Wang J; Yang Z; Han W
    Front Public Health; 2022; 10():1005700. PubMed ID: 36211704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Foveal avascular zone segmentation in optical coherence tomography angiography images using a deep learning approach.
    Mirshahi R; Anvari P; Riazi-Esfahani H; Sardarinia M; Naseripour M; Falavarjani KG
    Sci Rep; 2021 Jan; 11(1):1031. PubMed ID: 33441825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical Coherence Tomography Image Classification Using Hybrid Deep Learning and Ant Colony Optimization.
    Khan A; Pin K; Aziz A; Han JW; Nam Y
    Sensors (Basel); 2023 Jul; 23(15):. PubMed ID: 37571490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning models for screening of high myopia using optical coherence tomography.
    Choi KJ; Choi JE; Roh HC; Eun JS; Kim JM; Shin YK; Kang MC; Chung JK; Lee C; Lee D; Kang SW; Cho BH; Kim SJ
    Sci Rep; 2021 Nov; 11(1):21663. PubMed ID: 34737335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust Fovea Detection in Retinal OCT Imaging Using Deep Learning.
    Schurer-Waldheim S; Seebock P; Bogunovic H; Gerendas BS; Schmidt-Erfurth U
    IEEE J Biomed Health Inform; 2022 Aug; 26(8):3927-3937. PubMed ID: 35394920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinically relevant deep learning for detection and quantification of geographic atrophy from optical coherence tomography: a model development and external validation study.
    Zhang G; Fu DJ; Liefers B; Faes L; Glinton S; Wagner S; Struyven R; Pontikos N; Keane PA; Balaskas K
    Lancet Digit Health; 2021 Oct; 3(10):e665-e675. PubMed ID: 34509423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning-Based Detection of Pigment Signs for Analysis and Diagnosis of Retinitis Pigmentosa.
    Arsalan M; Baek NR; Owais M; Mahmood T; Park KR
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32570943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.