These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37670143)

  • 1. Deep-learning based automated quantification of critical optical coherence tomography features in neovascular age-related macular degeneration.
    Borrelli E; Oakley JD; Iaccarino G; Russakoff DB; Battista M; Grosso D; Borghesan F; Barresi C; Sacconi R; Bandello F; Querques G
    Eye (Lond); 2024 Feb; 38(3):537-544. PubMed ID: 37670143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated Quantification of Pathological Fluids in Neovascular Age-Related Macular Degeneration, and Its Repeatability Using Deep Learning.
    Mantel I; Mosinska A; Bergin C; Polito MS; Guidotti J; Apostolopoulos S; Ciller C; De Zanet S
    Transl Vis Sci Technol; 2021 Apr; 10(4):17. PubMed ID: 34003996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of retinal fluid monitoring in OCT imaging by automated deep learning versus human expert grading in neovascular AMD.
    Pawloff M; Gerendas BS; Deak G; Bogunovic H; Gruber A; Schmidt-Erfurth U
    Eye (Lond); 2023 Dec; 37(18):3793-3800. PubMed ID: 37311835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial Correspondence Between Intraretinal Fluid, Subretinal Fluid, and Pigment Epithelial Detachment in Neovascular Age-Related Macular Degeneration.
    Klimscha S; Waldstein SM; Schlegl T; Bogunovic H; Sadeghipour A; Philip AM; Podkowinski D; Pablik E; Zhang L; Abramoff MD; Sonka M; Gerendas BS; Schmidt-Erfurth U
    Invest Ophthalmol Vis Sci; 2017 Aug; 58(10):4039-4048. PubMed ID: 28813577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EFFECT OF RANIBIZUMAB AND AFLIBERCEPT ON RETINAL PIGMENT EPITHELIAL DETACHEMENT, SUBRETINAL AND INTRARETINAL FLUID IN AGE-RELATED MACULAR DEGENERATION.
    Sumarová P; Ovesná P; Matušková V; Beránek J; Michalec M; Michalcová L; Autrata D; Vysloužilová D; Chrapek O
    Cesk Slov Oftalmol; 2022; 78(4):176-185. PubMed ID: 35922146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Analysis of OCT for Neovascular Age-Related Macular Degeneration Using Deep Learning.
    Moraes G; Fu DJ; Wilson M; Khalid H; Wagner SK; Korot E; Ferraz D; Faes L; Kelly CJ; Spitz T; Patel PJ; Balaskas K; Keenan TDL; Keane PA; Chopra R
    Ophthalmology; 2021 May; 128(5):693-705. PubMed ID: 32980396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preliminary analysis of predicting the first recurrence in patients with neovascular age-related macular degeneration using deep learning.
    Jang B; Lee SY; Kim C; Park UC; Kim YG; Lee EK
    BMC Ophthalmol; 2023 Dec; 23(1):499. PubMed ID: 38062449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial intelligence-based fluid quantification and associated visual outcomes in a real-world, multicentre neovascular age-related macular degeneration national database.
    Martin-Pinardel R; Izquierdo-Serra J; De Zanet S; Parrado-Carrillo A; Garay-Aramburu G; Puzo M; Arruabarrena C; Sararols L; Abraldes M; Broc L; Escobar-Barranco JJ; Figueroa M; Zapata MA; Ruiz-Moreno JM; Moll-Udina A; Bernal-Morales C; Alforja S; Figueras-Roca M; Gómez-Baldó L; Ciller C; Apostolopoulos S; Mosinska A; Casaroli Marano RP; Zarranz-Ventura J;
    Br J Ophthalmol; 2024 Jan; 108(2):253-262. PubMed ID: 36627173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of Automated Quantification of Fluid Volumes to Anti-VEGF Therapy of Neovascular Age-Related Macular Degeneration.
    Schmidt-Erfurth U; Vogl WD; Jampol LM; Bogunović H
    Ophthalmology; 2020 Sep; 127(9):1211-1219. PubMed ID: 32327254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of an Artificial Intelligence-Based Detector of Sub- and Intraretinal Fluid on a Large Set of Optical Coherence Tomography Volumes in Age-Related Macular Degeneration and Diabetic Macular Edema.
    Habra O; Gallardo M; Meyer Zu Westram T; De Zanet S; Jaggi D; Zinkernagel M; Wolf S; Sznitman R
    Ophthalmologica; 2022; 245(6):516-527. PubMed ID: 36215958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning.
    Schlegl T; Waldstein SM; Bogunovic H; Endstraßer F; Sadeghipour A; Philip AM; Podkowinski D; Gerendas BS; Langs G; Schmidt-Erfurth U
    Ophthalmology; 2018 Apr; 125(4):549-558. PubMed ID: 29224926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Therapeutic response in the HAWK and HARRIER trials using deep learning in retinal fluid volume and compartment analysis.
    Schmidt-Erfurth U; Mulyukov Z; Gerendas BS; Reiter GS; Lorand D; Weissgerber G; Bogunović H
    Eye (Lond); 2023 Apr; 37(6):1160-1169. PubMed ID: 35523860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of intraretinal and subretinal fluid on clinical and anatomical outcomes in patients with neovascular age-related macular degeneration treated with bimonthly, treat-and-extend and as-needed ranibizumab in the In-Eye study.
    Saenz-de-Viteri M; Recalde S; Fernandez-Robredo P; López Gálvez MI; Arias Barquet L; Figueroa MS; García-Arumí J; García-Layana A;
    Acta Ophthalmol; 2021 Dec; 99(8):861-870. PubMed ID: 33720541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of sub-retinal fluid in determining treatment outcomes in patients with neovascular age-related macular degeneration--a phase IV randomised clinical trial with ranibizumab: the FLUID study.
    Arnold JJ; Markey CM; Kurstjens NP; Guymer RH
    BMC Ophthalmol; 2016 Mar; 16():31. PubMed ID: 27009515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated Quantitative Assessment of Retinal Fluid Volumes as Important Biomarkers in Neovascular Age-Related Macular Degeneration.
    Keenan TDL; Chakravarthy U; Loewenstein A; Chew EY; Schmidt-Erfurth U
    Am J Ophthalmol; 2021 Apr; 224():267-281. PubMed ID: 33359681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linking disease activity with optical coherence tomography angiography in neovascular age related macular degeneration using artificial intelligence.
    Schranz M; Bogunovic H; Deak G; Sadeghipour A; Reiter GS; Schmidt-Erfurth U
    Sci Rep; 2024 Aug; 14(1):19278. PubMed ID: 39164449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation of vascular and fluid-related parameters in neovascular age-related macular degeneration using deep learning.
    Schranz M; Told R; Hacker V; Reiter GS; Reumueller A; Vogl WD; Bogunovic H; Sacu S; Schmidt-Erfurth U; Roberts PK
    Acta Ophthalmol; 2023 Feb; 101(1):e95-e105. PubMed ID: 35912717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. VALIDATION OF AN AUTOMATED FLUID ALGORITHM ON REAL-WORLD DATA OF NEOVASCULAR AGE-RELATED MACULAR DEGENERATION OVER FIVE YEARS.
    Gerendas BS; Sadeghipour A; Michl M; Goldbach F; Mylonas G; Gruber A; Alten T; Leingang O; Sacu S; Bogunovic H; Schmidt-Erfurth U
    Retina; 2022 Sep; 42(9):1673-1682. PubMed ID: 35994584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated quantification of macular fluid in retinal diseases and their response to anti-VEGF therapy.
    Michl M; Fabianska M; Seeböck P; Sadeghipour A; Haj Najeeb B; Bogunovic H; Schmidt-Erfurth UM; Gerendas BS
    Br J Ophthalmol; 2022 Jan; 106(1):113-120. PubMed ID: 33087314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilization of deep learning to quantify fluid volume of neovascular age-related macular degeneration patients based on swept-source OCT imaging: The ONTARIO study.
    Sodhi SK; Pereira A; Oakley JD; Golding J; Trimboli C; Russakoff DB; Choudhry N
    PLoS One; 2022; 17(2):e0262111. PubMed ID: 35157713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.