BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 37670258)

  • 41. A novel link between SUMO modification and cancer metastasis.
    Baek SH
    Cell Cycle; 2006 Jul; 5(14):1492-5. PubMed ID: 16861889
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Progress in the Discovery of Small Molecule Modulators of DeSUMOylation.
    Chen S; Dong D; Xin W; Zhou H
    Curr Issues Mol Biol; 2020; 35():17-34. PubMed ID: 31422931
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spatiotemporal distribution of small ubiquitin-like modifiers during human placental development and in response to oxidative and inflammatory stress.
    Baczyk D; Audette MC; Coyaud E; Raught B; Kingdom JC
    J Physiol; 2018 May; 596(9):1587-1600. PubMed ID: 29468681
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The strategies for identification and quantification of SUMOylation.
    Zhang Y; Li Y; Tang B; Zhang CY
    Chem Commun (Camb); 2017 Jun; 53(52):6989-6998. PubMed ID: 28589199
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Progress of small ubiquitin-related modifiers in kidney diseases.
    Li O; Ma Q; Li F; Cai GY; Chen XM; Hong Q
    Chin Med J (Engl); 2019 Feb; 132(4):466-473. PubMed ID: 30707172
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Current Status of SUMOylation Inhibitors.
    Brackett CM; Blagg BSJ
    Curr Med Chem; 2021; 28(20):3892-3912. PubMed ID: 32778019
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Global analysis of sumoylation function reveals novel insights into development and appressorium-mediated infection of the rice blast fungus.
    Liu C; Li Z; Xing J; Yang J; Wang Z; Zhang H; Chen D; Peng YL; Chen XL
    New Phytol; 2018 Aug; 219(3):1031-1047. PubMed ID: 29663402
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hypoxia regulates sumoylation pathways in intervertebral disc cells: implications for hypoxic adaptations.
    Wang F; Cai F; Shi R; Wei JN; Wu XT
    Osteoarthritis Cartilage; 2016 Jun; 24(6):1113-24. PubMed ID: 26826302
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of Sox protein SUMOylation on neural development and regeneration.
    Chang KC
    Neural Regen Res; 2022 Mar; 17(3):477-481. PubMed ID: 34380874
    [TBL] [Abstract][Full Text] [Related]  

  • 50. SUMO-Mediated Regulation of Nuclear Functions and Signaling Processes.
    Zhao X
    Mol Cell; 2018 Aug; 71(3):409-418. PubMed ID: 30075142
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Binding to small ubiquitin-like modifier and the nucleolar protein Csm1 regulates substrate specificity of the Ulp2 protease.
    de Albuquerque CP; Suhandynata RT; Carlson CR; Yuan WT; Zhou H
    J Biol Chem; 2018 Aug; 293(31):12105-12119. PubMed ID: 29903909
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modification of cardiac transcription factor Gata6 by SUMO.
    Chen H; Sun W; Zhu J; Yuan H; Chu M; Wen B
    Biochimie; 2020 Mar; 170():212-218. PubMed ID: 32017966
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Adenovirus E4-ORF3 Protein Stimulates SUMOylation of General Transcription Factor TFII-I to Direct Proteasomal Degradation.
    Bridges RG; Sohn SY; Wright J; Leppard KN; Hearing P
    mBio; 2016 Jan; 7(1):e02184-15. PubMed ID: 26814176
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation of REGγ cellular distribution and function by SUMO modification.
    Wu Y; Wang L; Zhou P; Wang G; Zeng Y; Wang Y; Liu J; Zhang B; Liu S; Luo H; Li X
    Cell Res; 2011 May; 21(5):807-16. PubMed ID: 21445096
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Developing Practical Therapeutic Strategies that Target Protein SUMOylation.
    Cox OF; Huber PW
    Curr Drug Targets; 2019; 20(9):960-969. PubMed ID: 30362419
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sumoylation participates in the regulation of YB-1-mediated mismatch repair deficiency and alkylator tolerance.
    Mai RT; Chao CH; Chang YW; Kao YC; Cheng Y; Hsu HY; Su YY; Wang CY; Lai BY
    Am J Cancer Res; 2022; 12(12):5462-5483. PubMed ID: 36628281
    [TBL] [Abstract][Full Text] [Related]  

  • 57. System-wide Analysis of SUMOylation Dynamics in Response to Replication Stress Reveals Novel Small Ubiquitin-like Modified Target Proteins and Acceptor Lysines Relevant for Genome Stability.
    Xiao Z; Chang JG; Hendriks IA; Sigurðsson JO; Olsen JV; Vertegaal AC
    Mol Cell Proteomics; 2015 May; 14(5):1419-34. PubMed ID: 25755297
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Role of SUMO E3 Ligases in Signaling Pathway of Cancer Cells.
    Shi X; Du Y; Li S; Wu H
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408996
    [TBL] [Abstract][Full Text] [Related]  

  • 59. SUMO-Binding Entities (SUBEs) as Tools for the Enrichment, Isolation, Identification, and Characterization of the SUMO Proteome in Liver Cancer.
    Lopitz-Otsoa F; Delgado TC; Lachiondo-Ortega S; Azkargorta M; Elortza F; Rodríguez MS; Martínez-Chantar ML
    J Vis Exp; 2019 Nov; (153):. PubMed ID: 31736480
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Probing the roles of SUMOylation in cancer cell biology by using a selective SAE inhibitor.
    He X; Riceberg J; Soucy T; Koenig E; Minissale J; Gallery M; Bernard H; Yang X; Liao H; Rabino C; Shah P; Xega K; Yan ZH; Sintchak M; Bradley J; Xu H; Duffey M; England D; Mizutani H; Hu Z; Guo J; Chau R; Dick LR; Brownell JE; Newcomb J; Langston S; Lightcap ES; Bence N; Pulukuri SM
    Nat Chem Biol; 2017 Nov; 13(11):1164-1171. PubMed ID: 28892090
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.