These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
424 related articles for article (PubMed ID: 37670328)
1. Targeting LAG-3, TIM-3, and TIGIT for cancer immunotherapy. Cai L; Li Y; Tan J; Xu L; Li Y J Hematol Oncol; 2023 Sep; 16(1):101. PubMed ID: 37670328 [TBL] [Abstract][Full Text] [Related]
2. Immune Co-inhibitory Receptors PD-1, CTLA-4, TIM-3, LAG-3, and TIGIT in Medullary Thyroid Cancers: A Large Cohort Study. Shi X; Li CW; Tan LC; Wen SS; Liao T; Zhang Y; Chen TZ; Ma B; Yu PC; Lu ZW; Qu N; Wang Y; Shi RL; Wang YL; Ji QH; Wei WJ J Clin Endocrinol Metab; 2021 Jan; 106(1):120-132. PubMed ID: 33000173 [TBL] [Abstract][Full Text] [Related]
3. Immune checkpoint inhibitors associated cardiovascular immune-related adverse events. Jo W; Won T; Daoud A; Čiháková D Front Immunol; 2024; 15():1340373. PubMed ID: 38375475 [TBL] [Abstract][Full Text] [Related]
4. Immune checkpoints and cancer development: Therapeutic implications and future directions. Mehdizadeh S; Bayatipoor H; Pashangzadeh S; Jafarpour R; Shojaei Z; Motallebnezhad M Pathol Res Pract; 2021 Jul; 223():153485. PubMed ID: 34022684 [TBL] [Abstract][Full Text] [Related]
5. Expression of immune checkpoint molecules TIGIT and TIM-3 by tumor-infiltrating lymphocytes predicts poor outcome in sinonasal mucosal melanoma. Ledderose S; Ledderose C; Ledderose GJ Pathol Res Pract; 2024 Aug; 260():155468. PubMed ID: 39018929 [TBL] [Abstract][Full Text] [Related]
6. Immune checkpoint inhibitors: breakthroughs in cancer treatment. Kong X; Zhang J; Chen S; Wang X; Xi Q; Shen H; Zhang R Cancer Biol Med; 2024 May; 21(6):451-72. PubMed ID: 38801082 [TBL] [Abstract][Full Text] [Related]
7. The introduction of LAG-3 checkpoint blockade in melanoma: immunotherapy landscape beyond PD-1 and CTLA-4 inhibition. Kreidieh FY; Tawbi HA Ther Adv Med Oncol; 2023; 15():17588359231186027. PubMed ID: 37484526 [TBL] [Abstract][Full Text] [Related]
8. Association of TIM-3 checkpoint receptor expression on T cells with treatment-free remission in chronic myeloid leukemia. Irani YD; Kok CH; Clarson J; Shanmuganathan N; Branford S; Yeung DT; Ross DM; Hughes TP; Yong ASM Blood Adv; 2023 Jun; 7(11):2364-2374. PubMed ID: 36622326 [TBL] [Abstract][Full Text] [Related]
9. TIM-3 and TIGIT are possible immune checkpoint targets in patients with bladder cancer. Attalla K; Farkas AM; Anastos H; Audenet F; Galsky MD; Bhardwaj N; Sfakianos JP Urol Oncol; 2022 Sep; 40(9):403-406. PubMed ID: 32665122 [TBL] [Abstract][Full Text] [Related]
10. TIGIT, a novel immune checkpoint therapy for melanoma. Tang W; Chen J; Ji T; Cong X Cell Death Dis; 2023 Jul; 14(7):466. PubMed ID: 37495610 [TBL] [Abstract][Full Text] [Related]
11. Blood Levels of Co-inhibitory-Receptors: A Biomarker of Disease Prognosis in Multiple Sclerosis. Lavon I; Heli C; Brill L; Charbit H; Vaknin-Dembinsky A Front Immunol; 2019; 10():835. PubMed ID: 31134049 [No Abstract] [Full Text] [Related]
12. High co-expression of immune checkpoint receptors PD-1, CTLA-4, LAG-3, TIM-3, and TIGIT on tumor-infiltrating lymphocytes in early-stage breast cancer. Mollavelioglu B; Cetin Aktas E; Cabioglu N; Abbasov A; Onder S; Emiroglu S; Tükenmez M; Muslumanoglu M; Igci A; Deniz G; Ozmen V World J Surg Oncol; 2022 Oct; 20(1):349. PubMed ID: 36271406 [TBL] [Abstract][Full Text] [Related]
13. Development of Anti-human T Cell Immunoreceptor with Ig and ITIM Domains (TIGIT) Monoclonal Antibodies for Flow Cytometry. Takei J; Asano T; Nanamiya R; Nakamura T; Yanaka M; Hosono H; Tanaka T; Sano M; Kaneko MK; Harada H; Kato Y Monoclon Antib Immunodiagn Immunother; 2021 Apr; 40(2):71-75. PubMed ID: 33900817 [TBL] [Abstract][Full Text] [Related]
14. The Potential of T Cell Immunoglobulin and Mucin-Domain Containing-3 (Tim-3) in Designing Novel Immunotherapy for Bladder Cancer. Mohsenzadegan M; Bavandpour P; Nowroozi MR; Amini E; Kourosh-Arami M; Momeni SA; Bokaie S; Sharifi L Endocr Metab Immune Disord Drug Targets; 2021; 21(12):2131-2146. PubMed ID: 33745426 [TBL] [Abstract][Full Text] [Related]
15. Lung Cancer Immunotherapy: Beyond Common Immune Checkpoints Inhibitors. Catalano M; Shabani S; Venturini J; Ottanelli C; Voltolini L; Roviello G Cancers (Basel); 2022 Dec; 14(24):. PubMed ID: 36551630 [TBL] [Abstract][Full Text] [Related]
16. Immune Co-inhibitory Receptors CTLA-4, PD-1, TIGIT, LAG-3, and TIM-3 in Upper Tract Urothelial Carcinomas: A Large Cohort Study. Jin S; Shang Z; Wang W; Gu C; Wei Y; Zhu Y; Yang C; Zhang T; Zhu Y; Zhu Y; Wu J; Ye D J Immunother; 2023 May; 46(4):154-159. PubMed ID: 37017991 [TBL] [Abstract][Full Text] [Related]
18. T-cell immunoglobulin and ITIM domain, as a potential immune checkpoint target for immunotherapy of colorectal cancer. Fathi M; Pustokhina I; Kuznetsov SV; Khayrullin M; Hojjat-Farsangi M; Karpisheh V; Jalili A; Jadidi-Niaragh F IUBMB Life; 2021 May; 73(5):726-738. PubMed ID: 33686787 [TBL] [Abstract][Full Text] [Related]
19. Combinatorial blockade for cancer immunotherapy: targeting emerging immune checkpoint receptors. Roy D; Gilmour C; Patnaik S; Wang LL Front Immunol; 2023; 14():1264327. PubMed ID: 37928556 [TBL] [Abstract][Full Text] [Related]
20. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Qin S; Xu L; Yi M; Yu S; Wu K; Luo S Mol Cancer; 2019 Nov; 18(1):155. PubMed ID: 31690319 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]