These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37670502)

  • 1. Comparison of Spectral Analysis of Gamma Band Activity During Actual and Imagined Movements as a Cognitive Tool.
    Kumawat J; Yadav A; Yadav K; Gaur KL
    Clin EEG Neurosci; 2024 May; 55(3):340-346. PubMed ID: 37670502
    [No Abstract]   [Full Text] [Related]  

  • 2. Induced Gamma-Band Activity during Actual and Imaginary Movements: EEG Analysis.
    Amo Usanos C; Boquete L; de Santiago L; Barea Navarro R; Cavaliere C
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32168747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Movement-related parameters modulate cortical activity during imaginary isometric plantar-flexions.
    do Nascimento OF; Nielsen KD; Voigt M
    Exp Brain Res; 2006 May; 171(1):78-90. PubMed ID: 16320044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EEG-based classification of imaginary left and right foot movements using beta rebound.
    Hashimoto Y; Ushiba J
    Clin Neurophysiol; 2013 Nov; 124(11):2153-60. PubMed ID: 23757379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subthalamic nucleus beta and gamma activity is modulated depending on the level of imagined grip force.
    Fischer P; Pogosyan A; Cheeran B; Green AL; Aziz TZ; Hyam J; Little S; Foltynie T; Limousin P; Zrinzo L; Hariz M; Samuel M; Ashkan K; Brown P; Tan H
    Exp Neurol; 2017 Jul; 293():53-61. PubMed ID: 28342747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstruction of hand, elbow and shoulder actual and imagined trajectories in 3D space using EEG slow cortical potentials.
    Sosnik R; Ben Zur O
    J Neural Eng; 2020 Feb; 17(1):016065. PubMed ID: 31747655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alpha and high gamma phase amplitude coupling during motor imagery and weighted cross-frequency coupling to extract discriminative cross-frequency patterns.
    Gwon D; Ahn M
    Neuroimage; 2021 Oct; 240():118403. PubMed ID: 34280525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induced Gamma-Band Activity During Voluntary Movement: EEG Analysis for Clinical Purposes.
    Amo C; Del Castillo MO; Barea R; de Santiago L; Martínez-Arribas A; Amo-López P; Boquete L
    Motor Control; 2016 Oct; 20(4):409-28. PubMed ID: 26284500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separating the Idea from the Action: A sLORETA Study.
    Rakusa M; Busan P; Battaglini PP; Zidar J
    Brain Topogr; 2018 Mar; 31(2):228-241. PubMed ID: 28808819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification and visualisation of differences between two motor tasks based on energy density maps for brain-computer interface applications.
    Vuckovic A; Sepulveda F
    Clin Neurophysiol; 2008 Feb; 119(2):446-58. PubMed ID: 18065266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EEG classification of different imaginary movements within the same limb.
    Yong X; Menon C
    PLoS One; 2015; 10(4):e0121896. PubMed ID: 25830611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of cortical connectivity during real and imagined rhythmic finger tapping.
    Stavrinou ML; Moraru L; Cimponeriu L; Della Penna S; Bezerianos A
    Brain Topogr; 2007; 19(3):137-45. PubMed ID: 17587169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does order and timing in performance of imagined and actual movements affect the motor imagery process? The duration of walking and writing task.
    Papaxanthis C; Pozzo T; Skoura X; Schieppati M
    Behav Brain Res; 2002 Aug; 134(1-2):209-15. PubMed ID: 12191807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding Imagined 3D Hand Movement Trajectories From EEG: Evidence to Support the Use of Mu, Beta, and Low Gamma Oscillations.
    Korik A; Sosnik R; Siddique N; Coyle D
    Front Neurosci; 2018; 12():130. PubMed ID: 29615848
    [No Abstract]   [Full Text] [Related]  

  • 15. Effect of real-time cortical feedback in motor imagery-based mental practice training.
    Bai O; Huang D; Fei DY; Kunz R
    NeuroRehabilitation; 2014; 34(2):355-63. PubMed ID: 24401829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An electroencephalographic study of imagined movement.
    Green JB; Bialy Y; Sora E; Thatcher RW
    Arch Phys Med Rehabil; 1997 Jun; 78(6):578-81. PubMed ID: 9196463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving motor imagery through a mirror box for BCI users.
    Gómez DMC; Braidot AAA
    J Neurophysiol; 2024 May; 131(5):832-841. PubMed ID: 38323330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-frequency neural activity at rest is correlated with the movement-related cortical potentials elicited during both real and imagined movements.
    Magnuson JR; McNeil CJ
    Neurosci Lett; 2021 Jan; 742():135530. PubMed ID: 33248162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induced gamma band activity from EEG as a possible index of training-related brain plasticity in motor tasks.
    Amo C; De Santiago L; Zarza Luciáñez D; León Alonso-Cortés JM; Alonso-Alonso M; Barea R; Boquete L
    PLoS One; 2017; 12(10):e0186008. PubMed ID: 28982173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EEG oscillatory patterns and classification of sequential compound limb motor imagery.
    Yi W; Qiu S; Wang K; Qi H; He F; Zhou P; Zhang L; Ming D
    J Neuroeng Rehabil; 2016 Jan; 13():11. PubMed ID: 26822435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.