BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37671177)

  • 1. Mechanistic Investigation of the Nickel-Catalyzed Transfer Hydrocyanation of Alkynes.
    Reisenbauer JC; Finkelstein P; Ebert MO; Morandi B
    ACS Catal; 2023 Sep; 13(17):11548-11555. PubMed ID: 37671177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nickel-Catalyzed Markovnikov Transfer Hydrocyanation in the Absence of Lewis Acid.
    Frye NL; Bhunia A; Studer A
    Org Lett; 2020 Jun; 22(11):4456-4460. PubMed ID: 32388999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic Study of Unprecedented Highly Regioselective Hydrocyanation of Terminal Alkynes: Insight into the Origins of the Regioselectivity and Ligand Effects.
    Jiang D; Fu M; Zhang Y; Li Q; Guo K; Yang Y; Zhao L
    J Comput Chem; 2020 Feb; 41(4):279-289. PubMed ID: 31713268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism and Selectivity Control in Ni- and Pd-Catalyzed Cross-Couplings Involving Carbon-Oxygen Bond Activation.
    Zhang SQ; Hong X
    Acc Chem Res; 2021 May; 54(9):2158-2171. PubMed ID: 33826300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp
    Kariofillis SK; Doyle AG
    Acc Chem Res; 2021 Feb; 54(4):988-1000. PubMed ID: 33511841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overcoming Selectivity Issues in Reversible Catalysis: A Transfer Hydrocyanation Exhibiting High Kinetic Control.
    Bhawal BN; Reisenbauer JC; Ehinger C; Morandi B
    J Am Chem Soc; 2020 Jun; 142(25):10914-10920. PubMed ID: 32478515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperative Palladium/Lewis Acid-Catalyzed Transfer Hydrocyanation of Alkenes and Alkynes Using 1-Methylcyclohexa-2,5-diene-1-carbonitrile.
    Bhunia A; Bergander K; Studer A
    J Am Chem Soc; 2018 Nov; 140(47):16353-16359. PubMed ID: 30392374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nickel-Catalyzed Highly Regioselective Hydrocyanation of Terminal Alkynes with Zn(CN)
    Zhang X; Xie X; Liu Y
    J Am Chem Soc; 2018 Jun; 140(24):7385-7389. PubMed ID: 29851478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer Hydrocyanation of α- and α,β-Substituted Styrenes Catalyzed by Boron Lewis Acids.
    Orecchia P; Yuan W; Oestreich M
    Angew Chem Int Ed Engl; 2019 Mar; 58(11):3579-3583. PubMed ID: 30624005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nickel-Catalyzed Reductive Alkyne Hydrocyanation Enabled by Malononitrile and a Formaldehyde Additive.
    Palermo AF; Chiu BSY; Patel P; Rousseaux SAL
    J Am Chem Soc; 2023 Nov; ():. PubMed ID: 37924301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand development in the Ni-catalyzed hydrocyanation of alkenes.
    Bini L; Müller C; Vogt D
    Chem Commun (Camb); 2010 Nov; 46(44):8325-34. PubMed ID: 20972491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How does the nickel pincer complex catalyze the conversion of CO2 to a methanol derivative? A computational mechanistic study.
    Huang F; Zhang C; Jiang J; Wang ZX; Guan H
    Inorg Chem; 2011 Apr; 50(8):3816-25. PubMed ID: 21413735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic reversible alkene-nitrile interconversion through controllable transfer hydrocyanation.
    Fang X; Yu P; Morandi B
    Science; 2016 Feb; 351(6275):832-6. PubMed ID: 26912891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin and Regioselectivity of Direct Hydrogen Atom Transfer Mechanism of C(sp
    Dong YJ; Zhu B; Liang YJ; Guan W; Su ZM
    Inorg Chem; 2021 Dec; 60(24):18706-18714. PubMed ID: 34823352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic Investigation of the Nickel-Catalyzed Metathesis between Aryl Thioethers and Aryl Nitriles.
    Boehm P; Müller P; Finkelstein P; Rivero-Crespo MA; Ebert MO; Trapp N; Morandi B
    J Am Chem Soc; 2022 Jul; 144(29):13096-13108. PubMed ID: 35834613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decarbonylative Cross-Couplings: Nickel Catalyzed Functional Group Interconversion Strategies for the Construction of Complex Organic Molecules.
    Guo L; Rueping M
    Acc Chem Res; 2018 May; 51(5):1185-1195. PubMed ID: 29652129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic Insights into the Ni-Catalyzed Reductive Carboxylation of C-O Bonds in Aromatic Esters with CO
    Han YL; Zhao BY; Jiang KY; Yan HM; Zhang ZX; Yang WJ; Guo Z; Li YR
    Chem Asian J; 2018 Jun; 13(12):1570-1581. PubMed ID: 29774983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nickel-Catalyzed Hydrocyanation of Allenes and Its Application.
    Arai S
    Chem Pharm Bull (Tokyo); 2019; 67(5):397-403. PubMed ID: 31061363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-Couplings Using Aryl Ethers via C-O Bond Activation Enabled by Nickel Catalysts.
    Tobisu M; Chatani N
    Acc Chem Res; 2015 Jun; 48(6):1717-26. PubMed ID: 26036674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct functionalization processes: a journey from palladium to copper to iron to nickel to metal-free coupling reactions.
    Mousseau JJ; Charette AB
    Acc Chem Res; 2013 Feb; 46(2):412-24. PubMed ID: 23098328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.