These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37671420)

  • 1. Intrafibrillar Crosslinking Enables Decoupling of Mechanical Properties and Structure of a Composite Fibrous Hydrogel.
    Chen Z; Ezzo M; Zondag B; Rakhshani F; Ma Y; Hinz B; Kumacheva E
    Adv Mater; 2024 Jan; 36(2):e2305964. PubMed ID: 37671420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myofibroblast activation in synthetic fibrous matrices composed of dextran vinyl sulfone.
    Davidson CD; Jayco DKP; Matera DL; DePalma SJ; Hiraki HL; Wang WY; Baker BM
    Acta Biomater; 2020 Mar; 105():78-86. PubMed ID: 31945504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammary fibroblasts remodel fibrillar collagen microstructure in a biomimetic nanocomposite hydrogel.
    Liu C; Chiang B; Lewin Mejia D; Luker KE; Luker GD; Lee A
    Acta Biomater; 2019 Jan; 83():221-232. PubMed ID: 30414485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterned photocrosslinking to establish stiffness anisotropies in fibrous 3D hydrogels.
    Jagiełło A; Hu Q; Castillo U; Botvinick E
    Acta Biomater; 2022 Mar; 141():39-47. PubMed ID: 34971786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in vitro model of fibrosis using crosslinked native extracellular matrix-derived hydrogels to modulate biomechanics without changing composition.
    Nizamoglu M; de Hilster RHJ; Zhao F; Sharma PK; Borghuis T; Harmsen MC; Burgess JK
    Acta Biomater; 2022 Jul; 147():50-62. PubMed ID: 35605955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crosslinker structure modulates bulk mechanical properties and dictates hMSC behavior on hyaluronic acid hydrogels.
    Morton LD; Castilla-Casadiego DA; Palmer AC; Rosales AM
    Acta Biomater; 2023 Jan; 155():258-270. PubMed ID: 36423819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fibroblast alignment and matrix remodeling induced by a stiffness gradient in a skin-derived extracellular matrix hydrogel.
    Zhao F; Zhang M; Nizamoglu M; Kaper HJ; Brouwer LA; Borghuis T; Burgess JK; Harmsen MC; Sharma PK
    Acta Biomater; 2024 Jul; 182():67-80. PubMed ID: 38750915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective stiffening of fibrin hydrogels with micron resolution via photocrosslinking.
    Keating M; Lim M; Hu Q; Botvinick E
    Acta Biomater; 2019 Mar; 87():88-96. PubMed ID: 30660778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of hydrogel stiffness by external stimuli: soft materials for mechanotransduction studies.
    Ting MS; Travas-Sejdic J; Malmström J
    J Mater Chem B; 2021 Sep; 9(37):7578-7596. PubMed ID: 34596202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanochemical Adhesion and Plasticity in Multifiber Hydrogel Networks.
    Davidson MD; Ban E; Schoonen ACM; Lee MH; D'Este M; Shenoy VB; Burdick JA
    Adv Mater; 2020 Feb; 32(8):e1905719. PubMed ID: 31851400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible dynamic mechanics of hydrogels for regulation of cellular behavior.
    Jeon O; Kim TH; Alsberg E
    Acta Biomater; 2021 Dec; 136():88-98. PubMed ID: 34563721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular matrix type modulates mechanotransduction of stem cells.
    Stanton AE; Tong X; Yang F
    Acta Biomater; 2019 Sep; 96():310-320. PubMed ID: 31255664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-dependent cellular morphogenesis and matrix stiffening in proteolytically responsive hydrogels.
    Kesselman D; Kossover O; Mironi-Harpaz I; Seliktar D
    Acta Biomater; 2013 Aug; 9(8):7630-9. PubMed ID: 23624218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogel mechanics regulate fibroblast DNA methylation and chromatin condensation.
    Sumey JL; Johnston PC; Harrell AM; Caliari SR
    Biomater Sci; 2023 Apr; 11(8):2886-2897. PubMed ID: 36880435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Double - network hydrogel based on exopolysaccharides as a biomimetic extracellular matrix to augment articular cartilage regeneration.
    Cai Z; Tang Y; Wei Y; Wang P; Zhang H
    Acta Biomater; 2022 Oct; 152():124-143. PubMed ID: 36055611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulating myogenic differentiation of mesenchymal stem cells using thermosensitive hydrogels.
    Xu Y; Li Z; Li X; Fan Z; Liu Z; Xie X; Guan J
    Acta Biomater; 2015 Oct; 26():23-33. PubMed ID: 26277379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic Nanofibrillar Hydrogel with Cell-Adaptable Network for Enhancing Cellular Mechanotransduction, Metabolic Energetics, and Bone Regeneration.
    Xie X; Li Z; Yang X; Yang B; Zong Z; Wang X; Duan L; Lin S; Li G; Bian L
    J Am Chem Soc; 2023 Jul; 145(28):15218-15229. PubMed ID: 37428960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of UVA-riboflavin crosslinking to enhance the mechanical properties of extracellular matrix derived hydrogels.
    Ahearne M; Coyle A
    J Mech Behav Biomed Mater; 2016 Feb; 54():259-67. PubMed ID: 26476968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Approaching the compressive modulus of articular cartilage with a decellularized cartilage-based hydrogel.
    Beck EC; Barragan M; Tadros MH; Gehrke SH; Detamore MS
    Acta Biomater; 2016 Jul; 38():94-105. PubMed ID: 27090590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of azobenzene-bearing hydrogel with photoswitchable mechanics driven by photo-induced phase transition for in vitro disease modeling.
    Homma K; Chang AC; Yamamoto S; Tamate R; Ueki T; Nakanishi J
    Acta Biomater; 2021 Sep; 132():103-113. PubMed ID: 33744500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.