These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37671466)

  • 21. Three-dimensional locations of destinations have species-dependent effects on the choice of paths and the gap-bridging performance of arboreal snakes.
    Hoefer KM; Jayne BC
    J Exp Zool A Ecol Genet Physiol; 2013 Mar; 319(3):124-37. PubMed ID: 23281077
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of perch diameter and incline on the kinematics, performance and modes of arboreal locomotion of corn snakes (Elaphe guttata).
    Astley HC; Jayne BC
    J Exp Biol; 2007 Nov; 210(Pt 21):3862-72. PubMed ID: 17951427
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Perch compliance and experience affect destination choice of brown tree snakes (Boiga irregularis).
    Mauro AA; Jayne CB
    Zoology (Jena); 2016 Apr; 119(2):113-118. PubMed ID: 26723759
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arboreal habitat structure affects route choice by rat snakes.
    Mansfield RH; Jayne BC
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Jan; 197(1):119-29. PubMed ID: 20957373
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Incline and peg spacing have interactive effects on the arboreal locomotor performance and kinematics of brown tree snakes, Boiga irregularis.
    Jayne BC; Baum JT; Byrnes G
    J Exp Biol; 2013 Sep; 216(Pt 17):3321-31. PubMed ID: 23685971
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A theoretical analysis of pitch stability during gliding in flying snakes.
    Jafari F; Ross SD; Vlachos PP; Socha JJ
    Bioinspir Biomim; 2014 Jun; 9(2):025014. PubMed ID: 24852642
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Why arboreal snakes should not be cylindrical: body shape, incline and surface roughness have interactive effects on locomotion.
    Jayne BC; Newman SJ; Zentkovich MM; Berns HM
    J Exp Biol; 2015 Dec; 218(Pt 24):3978-86. PubMed ID: 26677261
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gripping during climbing of arboreal snakes may be safe but not economical.
    Byrnes G; Jayne BC
    Biol Lett; 2014 Aug; 10(8):. PubMed ID: 25142200
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bitten by the "flying" tree snake, Chrysopelea paradisi.
    Tan TL; Ismail AK; Kong KW; Ahmad NK
    J Emerg Med; 2012 Apr; 42(4):420-3. PubMed ID: 22154775
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Perch size and structure have species-dependent effects on the arboreal locomotion of rat snakes and boa constrictors.
    Jayne BC; Herrmann MP
    J Exp Biol; 2011 Jul; 214(Pt 13):2189-201. PubMed ID: 21653813
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gliding hexapods and the origins of insect aerial behaviour.
    Yanoviak SP; Kaspari M; Dudley R
    Biol Lett; 2009 Aug; 5(4):510-2. PubMed ID: 19324632
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-dimensional launch kinematics in leaping, parachuting and gliding squirrels.
    Essner RL
    J Exp Biol; 2002 Aug; 205(Pt 16):2469-77. PubMed ID: 12124370
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the status of three nominal species in the synonymy of Dendrelaphis calligaster (Günther, 1867) (Serpentes: Colubridae).
    Rooijen JV; Vogel G
    Zootaxa; 2016 Mar; 4093(2):293-300. PubMed ID: 27394497
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Karyological studies on six species of Indian snakes (Colubridae: Reptilia).
    Sharma GP; Nakhasi U
    Cytobios; 1980; 27(107-108):177-92. PubMed ID: 7428439
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The aerodynamics of flying snake airfoils in tandem configuration.
    Jafari F; Holden D; LaFoy R; Vlachos PP; Socha JJ
    J Exp Biol; 2021 Jul; 224(14):. PubMed ID: 34297112
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Biomechanics of Multi-articular Muscle-Tendon Systems in Snakes.
    Astley HC
    Integr Comp Biol; 2020 Jul; 60(1):140-155. PubMed ID: 32211841
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bridging the gap: parkour athletes provide new insights into locomotion energetics of arboreal apes.
    Halsey LG; Coward SR; Thorpe SK
    Biol Lett; 2016 Nov; 12(11):. PubMed ID: 27881766
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Side-impact collision: mechanics of obstacle negotiation in sidewinding snakes.
    Astley HC; Rieser JM; Kaba A; Paez VM; Tomkinson I; Mendelson JR; Goldman DI
    Bioinspir Biomim; 2020 Oct; 15(6):065005. PubMed ID: 33111708
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Snakes mimic earthworms: propulsion using rectilinear travelling waves.
    Marvi H; Bridges J; Hu DL
    J R Soc Interface; 2013 Jul; 10(84):20130188. PubMed ID: 23635494
    [TBL] [Abstract][Full Text] [Related]  

  • 40. What Defines Different Modes of Snake Locomotion?
    Jayne BC
    Integr Comp Biol; 2020 Jul; 60(1):156-170. PubMed ID: 32271916
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.