These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37671593)

  • 1. Manganese Transfer Hydrogenases Based on the Biotin-Streptavidin Technology.
    Wang W; Tachibana R; Zou Z; Chen D; Zhang X; Lau K; Pojer F; Ward TR; Hu X
    Angew Chem Int Ed Engl; 2023 Oct; 62(43):e202311896. PubMed ID: 37671593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution.
    Liang AD; Serrano-Plana J; Peterson RL; Ward TR
    Acc Chem Res; 2019 Mar; 52(3):585-595. PubMed ID: 30735358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial transfer hydrogenases based on the biotin-(strept)avidin technology: fine tuning the selectivity by saturation mutagenesis of the host protein.
    Letondor C; Pordea A; Humbert N; Ivanova A; Mazurek S; Novic M; Ward TR
    J Am Chem Soc; 2006 Jun; 128(25):8320-8. PubMed ID: 16787096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes.
    Wu S; Zhou Y; Rebelein JG; Kuhn M; Mallin H; Zhao J; Igareta NV; Ward TR
    J Am Chem Soc; 2019 Oct; 141(40):15869-15878. PubMed ID: 31509711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Challenges and Opportunities.
    Heinisch T; Ward TR
    Acc Chem Res; 2016 Sep; 49(9):1711-21. PubMed ID: 27529561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emerging artificial metalloenzymes for asymmetric hydrogenation reactions.
    Goralski ST; Rose MJ
    Curr Opin Chem Biol; 2022 Feb; 66():102096. PubMed ID: 34879303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial metalloenzymes based on the biotin-avidin technology: enantioselective catalysis and beyond.
    Ward TR
    Acc Chem Res; 2011 Jan; 44(1):47-57. PubMed ID: 20949947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexibility of a biotinylated ligand in artificial metalloenzymes based on streptavidin--an insight from molecular dynamics simulations with classical and ab initio force fields.
    Panek JJ; Ward TR; Jezierska-Mazzarello A; Novic M
    J Comput Aided Mol Des; 2010 Sep; 24(9):719-32. PubMed ID: 20526651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring the active site of chemzymes by using a chemogenetic-optimization procedure: towards substrate-specific artificial hydrogenases based on the biotin-avidin technology.
    Klein G; Humbert N; Gradinaru J; Ivanova A; Gilardoni F; Rusbandi UE; Ward TR
    Angew Chem Int Ed Engl; 2005 Dec; 44(47):7764-7. PubMed ID: 16276543
    [No Abstract]   [Full Text] [Related]  

  • 10. Artificial metalloenzymes for enantioselective catalysis based on biotin-avidin.
    Collot J; Gradinaru J; Humbert N; Skander M; Zocchi A; Ward TR
    J Am Chem Soc; 2003 Jul; 125(30):9030-1. PubMed ID: 15369356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rationalization of a Streptavidin Based Enantioselective Artificial Suzukiase: An Integrative Computational Approach.
    Tiessler-Sala L; Maréchal JD; Lledós A
    Chemistry; 2024 Jul; 30(39):e202401165. PubMed ID: 38752552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial metalloenzymes based on biotin-avidin technology for the enantioselective reduction of ketones by transfer hydrogenation.
    Letondor C; Humbert N; Ward TR
    Proc Natl Acad Sci U S A; 2005 Mar; 102(13):4683-7. PubMed ID: 15772162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diversifying Metal-Ligand Cooperative Catalysis in Semi-Synthetic [Mn]-Hydrogenases.
    Pan HJ; Huang G; Wodrich MD; Tirani FF; Ataka K; Shima S; Hu X
    Angew Chem Int Ed Engl; 2021 Jun; 60(24):13350-13357. PubMed ID: 33635597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directed Evolution of Artificial Metalloenzymes: Genetic Optimization of the Catalytic Activity.
    Hestericová M
    Chimia (Aarau); 2018 Apr; 72(4):189-192. PubMed ID: 29720306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial metalloenzymes: (strept)avidin as host for enantioselective hydrogenation by achiral biotinylated rhodium-diphosphine complexes.
    Skander M; Humbert N; Collot J; Gradinaru J; Klein G; Loosli A; Sauser J; Zocchi A; Gilardoni F; Ward TR
    J Am Chem Soc; 2004 Nov; 126(44):14411-8. PubMed ID: 15521760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dual anchoring strategy for the localization and activation of artificial metalloenzymes based on the biotin-streptavidin technology.
    Zimbron JM; Heinisch T; Schmid M; Hamels D; Nogueira ES; Schirmer T; Ward TR
    J Am Chem Soc; 2013 Apr; 135(14):5384-8. PubMed ID: 23496309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A catalytically active [Mn]-hydrogenase incorporating a non-native metal cofactor.
    Pan HJ; Huang G; Wodrich MD; Tirani FF; Ataka K; Shima S; Hu X
    Nat Chem; 2019 Jul; 11(7):669-675. PubMed ID: 31110253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enantioselective Hydroxylation of Benzylic C(sp
    Serrano-Plana J; Rumo C; Rebelein JG; Peterson RL; Barnet M; Ward TR
    J Am Chem Soc; 2020 Jun; 142(24):10617-10623. PubMed ID: 32450689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Modeling for Artificial Metalloenzyme Design and Optimization.
    Alonso-Cotchico L; Rodrı Guez-Guerra J; Lledós A; Maréchal JD
    Acc Chem Res; 2020 Apr; 53(4):896-905. PubMed ID: 32233391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Library design and screening protocol for artificial metalloenzymes based on the biotin-streptavidin technology.
    Mallin H; Hestericová M; Reuter R; Ward TR
    Nat Protoc; 2016 May; 11(5):835-52. PubMed ID: 27031496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.