These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 37671633)
21. π-Self-Assembly of a Coronene on Carbon Nanomaterial-Modified Electrode and Its Symmetrical Redox and H Nisha S; Senthil Kumar A ACS Omega; 2020 May; 5(20):11817-11828. PubMed ID: 32478273 [TBL] [Abstract][Full Text] [Related]
22. Glycol assisted synthesis of graphene-MnO2-polyaniline ternary composites for high performance supercapacitor electrodes. Mu B; Zhang W; Shao S; Wang A Phys Chem Chem Phys; 2014 May; 16(17):7872-80. PubMed ID: 24643731 [TBL] [Abstract][Full Text] [Related]
23. High Electrochemical Performance Phosphorus-Oxide Modified Graphene Electrode for Redox Supercapacitors Prepared by One-Step Electrochemical Exfoliation. Zu L; Gao X; Lian H; Cai X; Li C; Zhong Y; Hao Y; Zhang Y; Gong Z; Liu Y; Wang X; Cui X Nanomaterials (Basel); 2018 Jun; 8(6):. PubMed ID: 29890742 [TBL] [Abstract][Full Text] [Related]
24. One-Step Synthesis of Aminobenzoic Acid Functionalized Graphene Oxide by Electrochemical Exfoliation of Graphite for Oxygen Reduction to Hydrogen Peroxide and Supercapacitors. Lei Y; Madalena LDS; Ossonon BD; Junior FEB; Chen J; Lanza MRV; Tavares AC Molecules; 2022 Nov; 27(21):. PubMed ID: 36364456 [TBL] [Abstract][Full Text] [Related]
26. Controlled electrochemical surface exfoliation of graphite pencil electrodes for high-performance supercapacitors. AbdelHamid AA; Elgamouz A; Kawde AN RSC Adv; 2023 Jul; 13(31):21300-21312. PubMed ID: 37456541 [TBL] [Abstract][Full Text] [Related]
27. Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors. Zhang H; Bhat VV; Gallego NC; Contescu CI ACS Appl Mater Interfaces; 2012 Jun; 4(6):3239-46. PubMed ID: 22680779 [TBL] [Abstract][Full Text] [Related]
28. One-pot synthesis of manganese oxide/graphene composites via a plasma-enhanced electrochemical exfoliation process for supercapacitors. Dang MN; Nguyen TH; Nguyen TV; Thu TV; Le H; Akabori M; Ito N; Nguyen HY; Le TL; Nguyen TH; Nguyen VT; Phan NH Nanotechnology; 2020 Aug; 31(34):345401. PubMed ID: 32365336 [TBL] [Abstract][Full Text] [Related]
29. An electrochemical route to graphene oxide. You X; Chang JH; Ju BK; Pak JJ J Nanosci Nanotechnol; 2011 Jul; 11(7):5965-8. PubMed ID: 22121640 [TBL] [Abstract][Full Text] [Related]
30. Raman Fingerprints of Graphene Produced by Anodic Electrochemical Exfoliation. Nagyte V; Kelly DJ; Felten A; Picardi G; Shin Y; Alieva A; Worsley RE; Parvez K; Dehm S; Krupke R; Haigh SJ; Oikonomou A; Pollard AJ; Casiraghi C Nano Lett; 2020 May; 20(5):3411-3419. PubMed ID: 32233490 [TBL] [Abstract][Full Text] [Related]
31. Towards the continuous production of high crystallinity graphene via electrochemical exfoliation with molecular in situ encapsulation. Chen CH; Yang SW; Chuang MC; Woon WY; Su CY Nanoscale; 2015 Oct; 7(37):15362-73. PubMed ID: 26332120 [TBL] [Abstract][Full Text] [Related]
32. A novel electrochemical sensor for the analysis of β-agonists: the poly(acid chrome blue K)/graphene oxide-nafion/glassy carbon electrode. Lin X; Ni Y; Kokot S J Hazard Mater; 2013 Sep; 260():508-17. PubMed ID: 23811373 [TBL] [Abstract][Full Text] [Related]
33. Lithium intercalation compound dramatically influences the electrochemical properties of exfoliated MoS2. Ambrosi A; Sofer Z; Pumera M Small; 2015 Feb; 11(5):605-12. PubMed ID: 25207749 [TBL] [Abstract][Full Text] [Related]
34. Controlling the properties of graphene produced by electrochemical exfoliation. Hofmann M; Chiang WY; Nguyễn TD; Hsieh YP Nanotechnology; 2015 Aug; 26(33):335607. PubMed ID: 26221914 [TBL] [Abstract][Full Text] [Related]