These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 37671914)

  • 1. Determining the Number of Graphene Nanoribbons in Dual-Gate Field-Effect Transistors.
    Zhang J; Barin GB; Furrer R; Du CZ; Wang XY; Müllen K; Ruffieux P; Fasel R; Calame M; Perrin ML
    Nano Lett; 2023 Sep; 23(18):8474-8480. PubMed ID: 37671914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Edge Contacts to Atomically Precise Graphene Nanoribbons.
    Huang W; Braun O; Indolese DI; Barin GB; Gandus G; Stiefel M; Olziersky A; Müllen K; Luisier M; Passerone D; Ruffieux P; Schönenberger C; Watanabe K; Taniguchi T; Fasel R; Zhang J; Calame M; Perrin ML
    ACS Nano; 2023 Oct; 17(19):18706-18715. PubMed ID: 37578964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge transport mechanism in networks of armchair graphene nanoribbons.
    Richter N; Chen Z; Tries A; Prechtl T; Narita A; Müllen K; Asadi K; Bonn M; Kläui M
    Sci Rep; 2020 Feb; 10(1):1988. PubMed ID: 32029795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photomodulation of Charge Transport in All-Semiconducting 2D-1D van der Waals Heterostructures with Suppressed Persistent Photoconductivity Effect.
    Liu Z; Qiu H; Wang C; Chen Z; Zyska B; Narita A; Ciesielski A; Hecht S; Chi L; Müllen K; Samorì P
    Adv Mater; 2020 Jul; 32(26):e2001268. PubMed ID: 32378243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transfer-Free Synthesis of Atomically Precise Graphene Nanoribbons on Insulating Substrates.
    Mutlu Z; Llinas JP; Jacobse PH; Piskun I; Blackwell R; Crommie MF; Fischer FR; Bokor J
    ACS Nano; 2021 Feb; 15(2):2635-2642. PubMed ID: 33492120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field-Effect Transistors Based on Networks of Highly Aligned, Chemically Synthesized N = 7 Armchair Graphene Nanoribbons.
    Passi V; Gahoi A; Senkovskiy BV; Haberer D; Fischer FR; Grüneis A; Lemme MC
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):9900-9903. PubMed ID: 29516716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled Quantum Dot Formation in Atomically Engineered Graphene Nanoribbon Field-Effect Transistors.
    El Abbassi M; Perrin ML; Barin GB; Sangtarash S; Overbeck J; Braun O; Lambert CJ; Sun Q; Prechtl T; Narita A; Müllen K; Ruffieux P; Sadeghi H; Fasel R; Calame M
    ACS Nano; 2020 May; 14(5):5754-5762. PubMed ID: 32223259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomically Precise Graphene Nanoribbon Transistors with Long-Term Stability and Reliability.
    Dinh C; Yusufoglu M; Yumigeta K; Kinikar A; Sweepe T; Zeszut Z; Chang YJ; Copic C; Janssen S; Holloway R; Battaglia J; Kuntubek A; Zahin F; Lin YC; Vandenberghe WG; LeRoy BJ; Müllen K; Fasel R; Borin Barin G; Mutlu Z
    ACS Nano; 2024 Aug; 18(34):22949-22957. PubMed ID: 39145671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial Self-Assembly of Atomically Precise Graphene Nanoribbons into Uniform Thin Films for Electronics Applications.
    Shekhirev M; Vo TH; Mehdi Pour M; Lipatov A; Munukutla S; Lyding JW; Sinitskii A
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):693-700. PubMed ID: 27933763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenyl Functionalization of Atomically Precise Graphene Nanoribbons for Engineering Inter-ribbon Interactions and Graphene Nanopores.
    Shekhirev M; Zahl P; Sinitskii A
    ACS Nano; 2018 Aug; 12(8):8662-8669. PubMed ID: 30085655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MoRe Electrodes with 10 nm Nanogaps for Electrical Contact to Atomically Precise Graphene Nanoribbons.
    Bouwmeester D; Ghiasi TS; Borin Barin G; Müllen K; Ruffieux P; Fasel R; van der Zant HSJ
    ACS Appl Nano Mater; 2023 Aug; 6(15):13935-13944. PubMed ID: 37588262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational fabrication of graphene nanoribbons using a nanowire etch mask.
    Bai J; Duan X; Huang Y
    Nano Lett; 2009 May; 9(5):2083-7. PubMed ID: 19344151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bandgap engineering of zigzag graphene nanoribbons by manipulating edge states via defective boundaries.
    Zhang A; Wu Y; Ke SH; Feng YP; Zhang C
    Nanotechnology; 2011 Oct; 22(43):435702. PubMed ID: 21967829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpolymer Self-Assembly of Bottom-up Graphene Nanoribbons Fabricated from Fluorinated Precursors.
    Ohtomo M; Jippo H; Hayashi H; Yamaguchi J; Ohfuchi M; Yamada H; Sato S
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31623-31630. PubMed ID: 30148601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(ethylene oxide) Functionalized Graphene Nanoribbons with Excellent Solution Processability.
    Huang Y; Mai Y; Beser U; Teyssandier J; Velpula G; van Gorp H; Straasø LA; Hansen MR; Rizzo D; Casiraghi C; Yang R; Zhang G; Wu D; Zhang F; Yan D; De Feyter S; Müllen K; Feng X
    J Am Chem Soc; 2016 Aug; 138(32):10136-9. PubMed ID: 27463961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunneling current modulation in atomically precise graphene nanoribbon heterojunctions.
    Senkovskiy BV; Nenashev AV; Alavi SK; Falke Y; Hell M; Bampoulis P; Rybkovskiy DV; Usachov DY; Fedorov AV; Chernov AI; Gebhard F; Meerholz K; Hertel D; Arita M; Okuda T; Miyamoto K; Shimada K; Fischer FR; Michely T; Baranovskii SD; Lindfors K; Szkopek T; Grüneis A
    Nat Commun; 2021 May; 12(1):2542. PubMed ID: 33953174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled Preparation and Device Application of Sub-5 nm Graphene Nanoribbons and Graphene Nanoribbon/Carbon Nanotube Intramolecular Heterostructures.
    He Z; Wang K; Yan C; Wan L; Zhou Q; Zhang T; Ye X; Zhang Y; Shi F; Jiang S; Zhao J; Wang K; Chen C
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):7148-7156. PubMed ID: 36692227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bulk properties of solution-synthesized chevron-like graphene nanoribbons.
    Vo TH; Shekhirev M; Lipatov A; Korlacki RA; Sinitskii A
    Faraday Discuss; 2014; 173():105-13. PubMed ID: 25465679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum dot behavior in bilayer graphene nanoribbons.
    Wang M; Song EB; Lee S; Tang J; Lang M; Zeng C; Xu G; Zhou Y; Wang KL
    ACS Nano; 2011 Nov; 5(11):8769-73. PubMed ID: 22017308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping the Conductance of Electronically Decoupled Graphene Nanoribbons.
    Jacobse PH; Mangnus MJJ; Zevenhuizen SJM; Swart I
    ACS Nano; 2018 Jul; 12(7):7048-7056. PubMed ID: 29939719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.