These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 37671988)
1. Time-domain immersed-boundary simulation of acoustic propagation between two spherical gas bubblesa). Hou J; Zheng ZC; Allen JS JASA Express Lett; 2023 Sep; 3(9):. PubMed ID: 37671988 [TBL] [Abstract][Full Text] [Related]
2. Time-domain simulation of acoustic wave scattering and internal propagation from a gas bubble of various shapes. Hou J; Zheng ZC; Allen JS J Acoust Soc Am; 2023 Mar; 153(3):1468. PubMed ID: 37002085 [TBL] [Abstract][Full Text] [Related]
3. Direct simulation of acoustic scattering problems involving fluid-structure interaction using an efficient immersed boundary-lattice Boltzmann method. Cai Y; Lu J; Li S J Acoust Soc Am; 2018 Oct; 144(4):2256. PubMed ID: 30404499 [TBL] [Abstract][Full Text] [Related]
4. Nonlinear oscillation and acoustic scattering of bubbles. Ma Y; Zhao F Ultrason Sonochem; 2021 Jun; 74():105573. PubMed ID: 33940397 [TBL] [Abstract][Full Text] [Related]
5. Simulation of sound propagation over porous barriers of arbitrary shapes. Ke G; Zheng ZC J Acoust Soc Am; 2015 Jan; 137(1):303-9. PubMed ID: 25618061 [TBL] [Abstract][Full Text] [Related]
6. A boundary integral equation method using auxiliary interior surface approach for acoustic radiation and scattering in two dimensions. Yang SA J Acoust Soc Am; 2002 Oct; 112(4):1307-17. PubMed ID: 12398437 [TBL] [Abstract][Full Text] [Related]
7. Resonant acoustic scattering by two spherical bubbles. Valier-Brasier T; Conoir JM J Acoust Soc Am; 2019 Jan; 145(1):301. PubMed ID: 30710938 [TBL] [Abstract][Full Text] [Related]
8. Acoustical scattering cross section of gas bubbles under dual-frequency acoustic excitation. Zhang Y; Li S Ultrason Sonochem; 2015 Sep; 26():437-444. PubMed ID: 25801796 [TBL] [Abstract][Full Text] [Related]
9. A numerical investigation of the resonance of gas-filled microbubbles: resonance dependence on acoustic pressure amplitude. Macdonald CA; Sboros V; Gomatam J; Pye SD; Moran CM; Norman McDicken W Ultrasonics; 2004 Dec; 43(2):113-22. PubMed ID: 15530985 [TBL] [Abstract][Full Text] [Related]
10. Modeling frequency shifts of collective bubble resonances with the boundary element method. Jerez Boudesseul R; van 't Wout E J Acoust Soc Am; 2023 Mar; 153(3):1898. PubMed ID: 37002100 [TBL] [Abstract][Full Text] [Related]
11. Acoustic backscattering observations from non-spherical gas bubbles with ka between 0.03 and 4.4. Padilla AM; Weber TC J Acoust Soc Am; 2021 Apr; 149(4):2504. PubMed ID: 33940916 [TBL] [Abstract][Full Text] [Related]
12. Comparison of frequency domain and time domain methods for the numerical simulation of contactless ultrasonic cavitation. Beckwith C; Djambazov G; Pericleous K; Tonry C Ultrason Sonochem; 2022 Sep; 89():106138. PubMed ID: 36049449 [TBL] [Abstract][Full Text] [Related]
13. Ultrasonic scattering cross sections of shell-encapsulated gas bubbles immersed in a viscoelastic liquid: first and second harmonics. Machado JC; Valente JS Ultrasonics; 2003 Nov; 41(8):605-13. PubMed ID: 14585472 [TBL] [Abstract][Full Text] [Related]
14. Acoustics of Cubic Bubbles: Six Coupled Oscillators. Harazi M; Rupin M; Stephan O; Bossy E; Marmottant P Phys Rev Lett; 2019 Dec; 123(25):254501. PubMed ID: 31922792 [TBL] [Abstract][Full Text] [Related]
15. Modeling impedance boundary conditions and acoustic barriers using the immersed boundary method: The three-dimensional case. Bilbao S J Acoust Soc Am; 2023 Aug; 154(2):874-885. PubMed ID: 37566717 [TBL] [Abstract][Full Text] [Related]
16. Proximity resonances of water-entrained air bubbles near acoustically reflecting boundaries. van 't Wout E; Feuillade C J Acoust Soc Am; 2021 Apr; 149(4):2477. PubMed ID: 33940878 [TBL] [Abstract][Full Text] [Related]
17. Nonlinear ultrasonic propagation in bubbly liquids: a numerical model. Vanhille C; Campos-Pozuelo C Ultrasound Med Biol; 2008 May; 34(5):792-808. PubMed ID: 18314254 [TBL] [Abstract][Full Text] [Related]
18. Eccentricity effects on acoustic radiation from a spherical source suspended within a thermoviscous fluid sphere. Hasheminejad SM; Azarpeyvand M IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Nov; 50(11):1444-54. PubMed ID: 14682628 [TBL] [Abstract][Full Text] [Related]
19. Low frequency sound scattering from spherical assemblages of bubbles using effective medium theory. Hahn TR J Acoust Soc Am; 2007 Dec; 122(6):3252-67. PubMed ID: 18247737 [TBL] [Abstract][Full Text] [Related]
20. Low-intensity ultrasound induced cavitation and streaming in oxygen-supersaturated water: Role of cavitation bubbles as physical cleaning agents. Yamashita T; Ando K Ultrason Sonochem; 2019 Apr; 52():268-279. PubMed ID: 30573434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]