These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37671990)

  • 21. Statistical analyses support power law distributions found in neuronal avalanches.
    Klaus A; Yu S; Plenz D
    PLoS One; 2011; 6(5):e19779. PubMed ID: 21720544
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Altered spreading of neuronal avalanches in temporal lobe epilepsy relates to cognitive performance: A resting-state hdEEG study.
    Duma GM; Danieli A; Mento G; Vitale V; Opipari RS; Jirsa V; Bonanni P; Sorrentino P
    Epilepsia; 2023 May; 64(5):1278-1288. PubMed ID: 36799098
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spontaneous cortical activity is transiently poised close to criticality.
    Hahn G; Ponce-Alvarez A; Monier C; Benvenuti G; Kumar A; Chavane F; Deco G; Frégnac Y
    PLoS Comput Biol; 2017 May; 13(5):e1005543. PubMed ID: 28542191
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controlling avalanche criticality in 2D nano arrays.
    Zohar YC; Yochelis S; Dahmen KA; Jung G; Paltiel Y
    Sci Rep; 2013; 3():1845. PubMed ID: 23677142
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Suppression and frequency control of repetitive spiking in the FitzHugh-Nagumo model.
    Sakaguchi H; Yamasaki K
    Phys Rev E; 2023 Jul; 108(1-1):014207. PubMed ID: 37583215
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Critical brain wave dynamics of neuronal avalanches.
    Galinsky VL; Frank LR
    Front Phys; 2023; 11():. PubMed ID: 37008648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deviations from Critical Dynamics in Interictal Epileptiform Activity.
    Arviv O; Medvedovsky M; Sheintuch L; Goldstein A; Shriki O
    J Neurosci; 2016 Nov; 36(48):12276-12292. PubMed ID: 27903734
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Breakdown of avalanche critical behaviour in polycrystalline plasticity.
    Richeton T; Weiss J; Louchet F
    Nat Mater; 2005 Jun; 4(6):465-9. PubMed ID: 15880114
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Universal organization of resting brain activity at the thermodynamic critical point.
    Yu S; Yang H; Shriki O; Plenz D
    Front Syst Neurosci; 2013; 7():42. PubMed ID: 23986660
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling neuronal avalanches and long-range temporal correlations at the emergence of collective oscillations: Continuously varying exponents mimic M/EEG results.
    Dalla Porta L; Copelli M
    PLoS Comput Biol; 2019 Apr; 15(4):e1006924. PubMed ID: 30951525
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Scale free avalanches in excitatory-inhibitory populations of spiking neurons with conductance based synaptic currents.
    Ehsani M; Jost J
    J Comput Neurosci; 2023 Feb; 51(1):149-172. PubMed ID: 36280652
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amplitude-modulated spiking as a novel route to bursting: Coupling-induced mixed-mode oscillations by symmetry breaking.
    Pedersen MG; Brøns M; Sørensen MP
    Chaos; 2022 Jan; 32(1):013121. PubMed ID: 35105132
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phase-sensitive excitability of a limit cycle.
    Franović I; Omel'chenko OE; Wolfrum M
    Chaos; 2018 Jul; 28(7):071105. PubMed ID: 30070536
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controlling Strain Bursts and Avalanches at the Nano- to Micrometer Scale.
    Cui Y; Po G; Ghoniem N
    Phys Rev Lett; 2016 Oct; 117(15):155502. PubMed ID: 27768336
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extracting functionally feedforward networks from a population of spiking neurons.
    Vincent K; Tauskela JS; Thivierge JP
    Front Comput Neurosci; 2012; 6():86. PubMed ID: 23091458
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Near-Critical Dynamics in Stimulus-Evoked Activity of the Human Brain and Its Relation to Spontaneous Resting-State Activity.
    Arviv O; Goldstein A; Shriki O
    J Neurosci; 2015 Oct; 35(41):13927-42. PubMed ID: 26468194
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of neural population activity toward self-organized criticality.
    Yada Y; Mita T; Sanada A; Yano R; Kanzaki R; Bakkum DJ; Hierlemann A; Takahashi H
    Neuroscience; 2017 Feb; 343():55-65. PubMed ID: 27915209
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stability of neuronal avalanches and long-range temporal correlations during the first year of life in human infant.
    Jannesari M; Saeedi A; Zare M; Ortiz-Mantilla S; Plenz D; Benasich AA
    Brain Struct Funct; 2019 Sep; 224(7):2453-2465. PubMed ID: 31267171
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stability of neuronal avalanches and long-range temporal correlations during the first year of life in human infants.
    Jannesari M; Saeedi A; Zare M; Ortiz-Mantilla S; Plenz D; Benasich AA
    Brain Struct Funct; 2020 Apr; 225(3):1169-1183. PubMed ID: 32095901
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neural avalanches at the critical point between replay and non-replay of spatiotemporal patterns.
    Scarpetta S; de Candia A
    PLoS One; 2013; 8(6):e64162. PubMed ID: 23840301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.