These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37672007)

  • 21. Role of Substrate Stiffness in Tissue Spreading: Wetting Transition and Tissue Durotaxis.
    Alert R; Casademunt J
    Langmuir; 2019 Jun; 35(23):7571-7577. PubMed ID: 30281318
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancing Directional Droplet Transport via Surface Charge Gradient: Insights from Molecular Dynamics Simulations.
    Jia H; Li X; Chen K; Yang F; Ren H; Li H; Li C
    Langmuir; 2024 Sep; ():. PubMed ID: 39258984
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elastic interactions compete with persistent cell motility to drive durotaxis.
    Bose S; Wang H; Xu X; Gopinath A; Dasbiswas K
    Biophys J; 2024 Nov; 123(21):3721-3735. PubMed ID: 39327734
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamics of Droplets Moving on Lubricated Polymer Brushes.
    Badr RGM; Hauer L; Vollmer D; Schmid F
    Langmuir; 2024 Jun; 40(24):12368-12380. PubMed ID: 38834186
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Substrate curvature gradient drives rapid droplet motion.
    Lv C; Chen C; Chuang YC; Tseng FG; Yin Y; Grey F; Zheng Q
    Phys Rev Lett; 2014 Jul; 113(2):026101. PubMed ID: 25062213
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular transport and flow past hard and soft surfaces: computer simulation of model systems.
    Léonforte F; Servantie J; Pastorino C; Müller M
    J Phys Condens Matter; 2011 May; 23(18):184105. PubMed ID: 21508476
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Statics of polymer droplets on deformable surfaces.
    Léonforte F; Müller M
    J Chem Phys; 2011 Dec; 135(21):214703. PubMed ID: 22149807
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Long-Distance Continuous Self-Transport of a Droplet by Merging Droplets on a Graphene-Covered Multibranch Gradient Groove Surface.
    Gao H; Zhang F; Liu Z; Song Y; Zhang Z; Ding J
    Langmuir; 2023 Dec; 39(48):17427-17435. PubMed ID: 37975860
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sliding Behavior of Droplets on a Tilted Substrate with a Chemical Step.
    Li Q; Liu Y; He B; Wen B
    Langmuir; 2023 Oct; 39(41):14487-14499. PubMed ID: 37782898
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced Movement of Two-Component Droplets on a Wedge-Shaped Ag/Cu Surface by a Wettability Gradient.
    Li Y; Huang J; Cheng J; Xu S; Pi P; Wen X
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15857-15865. PubMed ID: 33765767
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular Transport within Polymer Brushes: A FRET View at Aqueous Interfaces.
    Besford QA; Schubotz S; Chae S; Özdabak Sert AB; Weiss ACG; Auernhammer GK; Uhlmann P; Farinha JPS; Fery A
    Molecules; 2022 May; 27(9):. PubMed ID: 35566393
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Model of spontaneous droplet transport on a soft viscoelastic substrate with nonuniform thickness.
    Tamim SI; Bostwick JB
    Phys Rev E; 2021 Sep; 104(3-1):034611. PubMed ID: 34654114
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cloaking Transition of Droplets on Lubricated Brushes.
    Badr RGM; Hauer L; Vollmer D; Schmid F
    J Phys Chem B; 2022 Sep; 126(36):7047-7058. PubMed ID: 36062355
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A hybrid computational model for collective cell durotaxis.
    Escribano J; Sunyer R; Sánchez MT; Trepat X; Roca-Cusachs P; García-Aznar JM
    Biomech Model Mechanobiol; 2018 Aug; 17(4):1037-1052. PubMed ID: 29500553
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spontaneous Movement of a Droplet on a Conical Substrate: Theoretical Analysis of the Driving Force.
    Liu J; Feng Z; Ouyang W; Shui L; Liu Z
    ACS Omega; 2022 Jun; 7(24):20975-20982. PubMed ID: 35755370
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Directed transport of polymer drops on vibrating superhydrophobic substrates: a molecular dynamics study.
    Tretyakov N; Müller M
    Soft Matter; 2014 Jun; 10(24):4373-86. PubMed ID: 24801832
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Durotaxis as an elastic stability phenomenon.
    Lazopoulos KA; Stamenović D
    J Biomech; 2008; 41(6):1289-94. PubMed ID: 18308324
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cellular Durotaxis Revisited: Initial-Position-Dependent Determination of the Threshold Stiffness Gradient to Induce Durotaxis.
    Moriyama K; Kidoaki S
    Langmuir; 2019 Jun; 35(23):7478-7486. PubMed ID: 30230337
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nano-droplet jumping due to surface wettability variation: molecular modeling approach.
    Farrokhbin M; Hashemzadeh Rizi S; Lohrasebi A
    Phys Chem Chem Phys; 2023 Jan; 25(3):2161-2166. PubMed ID: 36594215
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toward steering the motion of surface rolling molecular machines by straining graphene substrate.
    Vaezi M; Nejat Pishkenari H
    Sci Rep; 2023 Nov; 13(1):20816. PubMed ID: 38012233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.