These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 37672152)
1. Is deeper always better? Evaluating deep learning models for yield forecasting with small data. Sabo F; Meroni M; Waldner F; Rembold F Environ Monit Assess; 2023 Sep; 195(10):1153. PubMed ID: 37672152 [TBL] [Abstract][Full Text] [Related]
2. Predicting rice yield at pixel scale through synthetic use of crop and deep learning models with satellite data in South and North Korea. Jeong S; Ko J; Yeom JM Sci Total Environ; 2022 Jan; 802():149726. PubMed ID: 34464811 [TBL] [Abstract][Full Text] [Related]
3. Exploring the potential role of environmental and multi-source satellite data in crop yield prediction across Northeast China. Li Z; Ding L; Xu D Sci Total Environ; 2022 Apr; 815():152880. PubMed ID: 34998760 [TBL] [Abstract][Full Text] [Related]
4. UAV and Machine Learning Based Refinement of a Satellite-Driven Vegetation Index for Precision Agriculture. Mazzia V; Comba L; Khaliq A; Chiaberge M; Gay P Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32365636 [TBL] [Abstract][Full Text] [Related]
5. Integrating multi-modal remote sensing, deep learning, and attention mechanisms for yield prediction in plant breeding experiments. Aviles Toledo C; Crawford MM; Tuinstra MR Front Plant Sci; 2024; 15():1408047. PubMed ID: 39119495 [TBL] [Abstract][Full Text] [Related]
6. Blasch G; Alemayehu Y; Lesne L; Wolter J; Taymans M; Tesfaye T; Negash T; Andulalem M; Gutu K; Debela M; Eshetu Z; Tesfaye K; Mottaleb K; Defourny P; Hodson DP Data Brief; 2024 Jun; 54():110427. PubMed ID: 38690323 [TBL] [Abstract][Full Text] [Related]
7. Early Identification of Crop Type for Smallholder Farming Systems Using Deep Learning on Time-Series Sentinel-2 Imagery. Khan HR; Gillani Z; Jamal MH; Athar A; Chaudhry MT; Chao H; He Y; Chen M Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850377 [TBL] [Abstract][Full Text] [Related]
8. Using of Multi-Source and Multi-Temporal Remote Sensing Data Improves Crop-Type Mapping in the Subtropical Agriculture Region. Sun C; Bian Y; Zhou T; Pan J Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31130689 [TBL] [Abstract][Full Text] [Related]
9. Predicting grain protein content of field-grown winter wheat with satellite images and partial least square algorithm. Tan C; Zhou X; Zhang P; Wang Z; Wang D; Guo W; Yun F PLoS One; 2020; 15(3):e0228500. PubMed ID: 32160185 [TBL] [Abstract][Full Text] [Related]
10. Deep Learning Based Prediction on Greenhouse Crop Yield Combined TCN and RNN. Gong L; Yu M; Jiang S; Cutsuridis V; Pearson S Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283083 [TBL] [Abstract][Full Text] [Related]
11. Modeling crop yield using NDVI-derived VGM metrics across different climatic regions in the USA. Shammi SA; Meng Q Int J Biometeorol; 2023 Jun; 67(6):1051-1062. PubMed ID: 37195358 [TBL] [Abstract][Full Text] [Related]
12. CropDeep: The Crop Vision Dataset for Deep-Learning-Based Classification and Detection in Precision Agriculture. Zheng YY; Kong JL; Jin XB; Wang XY; Zuo M Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30832283 [TBL] [Abstract][Full Text] [Related]
13. A COVID-19 Pandemic Artificial Intelligence-Based System With Deep Learning Forecasting and Automatic Statistical Data Acquisition: Development and Implementation Study. Yu CS; Chang SS; Chang TH; Wu JL; Lin YJ; Chien HF; Chen RJ J Med Internet Res; 2021 May; 23(5):e27806. PubMed ID: 33900932 [TBL] [Abstract][Full Text] [Related]
14. Synergistic integration of optical and microwave satellite data for crop yield estimation. Mateo-Sanchis A; Piles M; Muñoz-Marí J; Adsuara JE; Pérez-Suay A; Camps-Valls G Remote Sens Environ; 2019 Dec; 234():111460. PubMed ID: 31798192 [TBL] [Abstract][Full Text] [Related]
15. Multi-Year Mapping of Major Crop Yields in an Irrigation District from High Spatial and Temporal Resolution Vegetation Index. Yu B; Shang S Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30404139 [TBL] [Abstract][Full Text] [Related]
16. Improved Agricultural Field Segmentation in Satellite Imagery Using TL-ResUNet Architecture. Safarov F; Temurbek K; Jamoljon D; Temur O; Chedjou JC; Abdusalomov AB; Cho YI Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560151 [TBL] [Abstract][Full Text] [Related]
17. Probabilistic forecasting of remotely sensed cropland vegetation health and its relevance for food security. Hammad AT; Falchetta G Sci Total Environ; 2022 Sep; 838(Pt 2):156157. PubMed ID: 35618127 [TBL] [Abstract][Full Text] [Related]
18. Predicting wheat yield from 2001 to 2020 in Hebei Province at county and pixel levels based on synthesized time series images of Landsat and MODIS. Zhang G; Roslan SNAB; Shafri HZM; Zhao Y; Wang C; Quan L Sci Rep; 2024 Jul; 14(1):16212. PubMed ID: 39003342 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of the Use of the 12 Bands vs. NDVI from Sentinel-2 Images for Crop Identification. Lozano-Tello A; Siesto G; Fernández-Sellers M; Caballero-Mancera A Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631668 [TBL] [Abstract][Full Text] [Related]
20. Benchmarking deep learning models on large healthcare datasets. Purushotham S; Meng C; Che Z; Liu Y J Biomed Inform; 2018 Jul; 83():112-134. PubMed ID: 29879470 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]