These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 37672343)

  • 21. A fast and fully automatic method for cerebrovascular segmentation on time-of-flight (TOF) MRA image.
    Gao X; Uchiyama Y; Zhou X; Hara T; Asano T; Fujita H
    J Digit Imaging; 2011 Aug; 24(4):609-25. PubMed ID: 20824304
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MEA-Net: multilayer edge attention network for medical image segmentation.
    Liu H; Feng Y; Xu H; Liang S; Liang H; Li S; Zhu J; Yang S; Li F
    Sci Rep; 2022 May; 12(1):7868. PubMed ID: 35551234
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unsupervised Cerebrovascular Segmentation of TOF-MRA Images Based on Deep Neural Network and Hidden Markov Random Field Model.
    Fan S; Bian Y; Chen H; Kang Y; Yang Q; Tan T
    Front Neuroinform; 2019; 13():77. PubMed ID: 31998107
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Curv-Net: Curvilinear structure segmentation network based on selective kernel and multi-Bi-ConvLSTM.
    He Y; Sun H; Yi Y; Chen W; Kong J; Zheng C
    Med Phys; 2022 May; 49(5):3144-3158. PubMed ID: 35172016
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of vessel enhancement algorithms applied to time-of-flight MRA images for cerebrovascular segmentation.
    Phellan R; Forkert ND
    Med Phys; 2017 Nov; 44(11):5901-5915. PubMed ID: 28881037
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automatic brain segmentation in Time-of-Flight MRA images.
    Forkert ND; Säring D; Fiehler J; Illies T; Möller D; Handels H
    Methods Inf Med; 2009; 48(5):399-407. PubMed ID: 19696951
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A vessel segmentation method for multi-modality angiographic images based on multi-scale filtering and statistical models.
    Lu P; Xia J; Li Z; Xiong J; Yang J; Zhou S; Wang L; Chen M; Wang C
    Biomed Eng Online; 2016 Nov; 15(1):120. PubMed ID: 27825346
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Lung parenchyma segmentation based on double scale parallel attention network].
    Feng K; Ren L; Wu Y; Li Y; Wang H; Wang G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Aug; 39(4):721-729. PubMed ID: 36008336
    [TBL] [Abstract][Full Text] [Related]  

  • 29. HMA-Net: A deep U-shaped network combined with HarDNet and multi-attention mechanism for medical image segmentation.
    Liu Q; Han Z; Liu Z; Zhang J
    Med Phys; 2023 Mar; 50(3):1635-1646. PubMed ID: 36303466
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automatic segmentation, feature extraction and comparison of healthy and stroke cerebral vasculature.
    Deshpande A; Jamilpour N; Jiang B; Michel P; Eskandari A; Kidwell C; Wintermark M; Laksari K
    Neuroimage Clin; 2021; 30():102573. PubMed ID: 33578323
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SegR-Net: A deep learning framework with multi-scale feature fusion for robust retinal vessel segmentation.
    Ryu J; Rehman MU; Nizami IF; Chong KT
    Comput Biol Med; 2023 Sep; 163():107132. PubMed ID: 37343468
    [TBL] [Abstract][Full Text] [Related]  

  • 32. LIVE-Net: Comprehensive 3D vessel extraction framework in CT angiography.
    Sun Q; Yang J; Zhao S; Chen C; Hou Y; Yuan Y; Ma S; Huang Y
    Comput Biol Med; 2023 Jun; 159():106886. PubMed ID: 37062255
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An Active Contour Model Based on Adaptive Threshold for Extraction of Cerebral Vascular Structures.
    Wang J; Zhao S; Liu Z; Tian Y; Duan F; Pan Y
    Comput Math Methods Med; 2016; 2016():6472397. PubMed ID: 27597878
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RSU-Net: U-net based on residual and self-attention mechanism in the segmentation of cardiac magnetic resonance images.
    Li YZ; Wang Y; Huang YH; Xiang P; Liu WX; Lai QQ; Gao YY; Xu MS; Guo YF
    Comput Methods Programs Biomed; 2023 Apr; 231():107437. PubMed ID: 36863157
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cerebrovascular segmentation from TOF-MRA based on multiple-U-net with focal loss function.
    Guo X; Xiao R; Lu Y; Chen C; Yan F; Zhou K; He W; Wang Z
    Comput Methods Programs Biomed; 2021 Apr; 202():105998. PubMed ID: 33618143
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new architecture combining convolutional and transformer-based networks for automatic 3D multi-organ segmentation on CT images.
    Li C; Bagher-Ebadian H; Sultan R; Elshaikh M; Movsas B; Zhu D; Chetty IJ
    Med Phys; 2023 Nov; 50(11):6990-7002. PubMed ID: 37738468
    [TBL] [Abstract][Full Text] [Related]  

  • 37. IAS-NET: Joint intraclassly adaptive GAN and segmentation network for unsupervised cross-domain in neonatal brain MRI segmentation.
    Li B; You X; Wang J; Peng Q; Yin S; Qi R; Ren Q; Hong Z
    Med Phys; 2021 Nov; 48(11):6962-6975. PubMed ID: 34494276
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lung tumor segmentation in 4D CT images using motion convolutional neural networks.
    Momin S; Lei Y; Tian Z; Wang T; Roper J; Kesarwala AH; Higgins K; Bradley JD; Liu T; Yang X
    Med Phys; 2021 Nov; 48(11):7141-7153. PubMed ID: 34469001
    [TBL] [Abstract][Full Text] [Related]  

  • 39. GA-Net: A geographical attention neural network for the segmentation of body torso tissue composition.
    Dai J; Liu T; Torigian DA; Tong Y; Han S; Nie P; Zhang J; Li R; Xie F; Udupa JK
    Med Image Anal; 2024 Jan; 91():102987. PubMed ID: 37837691
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Threshold segmentation algorithm for automatic extraction of cerebral vessels from brain magnetic resonance angiography images.
    Wang R; Li C; Wang J; Wei X; Li Y; Zhu Y; Zhang S
    J Neurosci Methods; 2015 Feb; 241():30-6. PubMed ID: 25497064
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.