These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37672673)

  • 21. Determination of vocal fold mucosal wave velocity in an in vivo canine model.
    Sloan SH; Berke GS; Gerratt BR; Kreiman J; Ye M
    Laryngoscope; 1993 Sep; 103(9):947-53. PubMed ID: 8361313
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nonstimulated rabbit phonation model: Cricothyroid approximation.
    Novaleski CK; Kojima T; Chang S; Luo H; Valenzuela CV; Rousseau B
    Laryngoscope; 2016 Jul; 126(7):1589-94. PubMed ID: 26971861
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Empirical Eigenfunctions and medial surface dynamics of a human vocal fold.
    Döllinger M; Tayama N; Berry DA
    Methods Inf Med; 2005; 44(3):384-91. PubMed ID: 16113761
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Medial Surface Dynamics as a Function of Subglottal Pressure in a Canine Larynx Model.
    Oren L; Khosla S; Gutmark E
    J Voice; 2021 Jan; 35(1):69-76. PubMed ID: 31387765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vocal fold dynamics in a synthetic self-oscillating model: Intraglottal aerodynamic pressure and energy.
    Motie-Shirazi M; Zañartu M; Peterson SD; Erath BD
    J Acoust Soc Am; 2021 Aug; 150(2):1332. PubMed ID: 34470335
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aerodynamically driven phonation of individual vocal folds under general anesthesia in canines.
    Heaton JT; Kobler JB; Ottensmeyer MP; Petrillo RH; Tynan MA; Mehta DD; Hillman RE; Zeitels SM
    Laryngoscope; 2020 Aug; 130(8):1980-1988. PubMed ID: 31603575
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
    Zheng X; Bielamowicz S; Luo H; Mittal R
    Ann Biomed Eng; 2009 Mar; 37(3):625-42. PubMed ID: 19142730
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of tension, stiffness, and airflow on laryngeal resistance in the in vivo canine model.
    Bielamowicz S; Berke GS; Kreiman J; Sercarz JA; Green DC; Gerratt BR
    Ann Otol Rhinol Laryngol; 1993 Oct; 102(10):761-8. PubMed ID: 8215095
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of laryngeal nerve stimulation on phonation: a glottographic study using an in vivo canine model.
    Moore DM; Berke GS
    J Acoust Soc Am; 1988 Feb; 83(2):705-15. PubMed ID: 3351129
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The minimum glottal airflow to initiate vocal fold oscillation.
    Jiang JJ; Tao C
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2873-81. PubMed ID: 17550186
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of RLN and SLN stimulation on glottal area.
    Bielamowicz S; Berke GS; Watson D; Gerratt BR; Kreiman J
    Otolaryngol Head Neck Surg; 1994 Apr; 110(4):370-80. PubMed ID: 8170680
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative Evaluation of the In Vivo Vocal Fold Medial Surface Shape.
    Vahabzadeh-Hagh AM; Zhang Z; Chhetri DK
    J Voice; 2017 Jul; 31(4):513.e15-513.e23. PubMed ID: 28089390
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flow-induced oscillations of vocal-fold replicas with tuned extensibility and material properties.
    Luizard P; Bailly L; Yousefi-Mashouf H; Girault R; Orgéas L; Henrich Bernardoni N
    Sci Rep; 2023 Dec; 13(1):22658. PubMed ID: 38114547
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interactions of subglottal pressure and neuromuscular activation on fundamental frequency and intensity.
    Chhetri DK; Park SJ
    Laryngoscope; 2016 May; 126(5):1123-30. PubMed ID: 26971707
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phonatory effects of type I thyroplasty implant shape and depth of medialization in unilateral vocal fold paralysis.
    Orestes MI; Neubauer J; Sofer E; Salinas J; Chhetri DK
    Laryngoscope; 2014 Dec; 124(12):2791-6. PubMed ID: 25046146
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Euler-Bernoulli-type beam model of the vocal folds for describing curved and incomplete glottal closure patterns.
    Serry MA; Alzamendi GA; Zañartu M; Peterson SD
    J Mech Behav Biomed Mater; 2023 Nov; 147():106130. PubMed ID: 37774440
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct simultaneous measurement of intraglottal geometry and velocity fields in excised larynges.
    Khosla S; Oren L; Ying J; Gutmark E
    Laryngoscope; 2014 Apr; 124 Suppl 2():S1-13. PubMed ID: 24510612
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Laryngeal biomechanics: an overview of mucosal wave mechanics.
    Berke GS; Gerratt BR
    J Voice; 1993 Jun; 7(2):123-8. PubMed ID: 8353625
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Young's modulus of canine vocal fold cover layers.
    Chhetri DK; Rafizadeh S
    J Voice; 2014 Jul; 28(4):406-10. PubMed ID: 24491497
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of Thyroarytenoid Activation Induced Vibratory Asymmetry on Voice Acoustics and Perception.
    Chung HR; Lee Y; Reddy NK; Zhang Z; Chhetri DK
    Laryngoscope; 2024 Mar; 134(3):1327-1332. PubMed ID: 37676064
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.