BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37672759)

  • 1. Molecular Dynamics Study of the Antifouling Mechanism of Hydrophilic Polymer Brushes.
    Yagasaki T; Matubayasi N
    Langmuir; 2023 Sep; 39(37):13158-13168. PubMed ID: 37672759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics study of the interactions between a hydrophilic polymer brush on graphene and amino acid side chain analogues in water.
    Yagasaki T; Matubayasi N
    Phys Chem Chem Phys; 2022 Sep; 24(37):22877-22888. PubMed ID: 36124732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular simulations and understanding of antifouling zwitterionic polymer brushes.
    Liu Y; Zhang D; Ren B; Gong X; Xu L; Feng ZQ; Chang Y; He Y; Zheng J
    J Mater Chem B; 2020 May; 8(17):3814-3828. PubMed ID: 32227061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring the Interactions between Protein-Coated Microspheres and Polymer Brushes in Aqueous Solutions.
    Li W; Cao F; He C; Ohno K; Ngai T
    Langmuir; 2018 Jul; 34(30):8798-8806. PubMed ID: 29983064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of Hydration Repulsion of Zwitterionic Polymer Brushes Resistant to Protein Adhesion through Molecular Simulations.
    Song X; Man J; Qiu Y; Wang J; Li R; Zhang Y; Cui G; Li J; Li J; Chen Y
    ACS Appl Mater Interfaces; 2024 Apr; 16(14):17145-17162. PubMed ID: 38534071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aqueous fabrication of pH-gated, polymer-brush-modified alumina hybrid membranes.
    Sugnaux C; Lavanant L; Klok HA
    Langmuir; 2013 Jun; 29(24):7325-33. PubMed ID: 23391159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the Oxidative Stability of Antifouling Polymer Brushes.
    Du Y; Gao J; Chen T; Zhang C; Ji J; Xu ZK
    Langmuir; 2017 Jul; 33(29):7298-7304. PubMed ID: 28650665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New antifouling silica hydrogel.
    Beltrán-Osuna ÁA; Cao B; Cheng G; Jana SC; Espe MP; Lama B
    Langmuir; 2012 Jun; 28(25):9700-6. PubMed ID: 22607091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crosslinking Polymer Brushes with Ethylene Glycol-Containing Segments: Influence on Physicochemical and Antifouling Properties.
    Dehghani ES; Spencer ND; Ramakrishna SN; Benetti EM
    Langmuir; 2016 Oct; 32(40):10317-10327. PubMed ID: 27642809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elastic repulsion from polymer brush layers exhibiting high protein repellency.
    Inoue Y; Nakanishi T; Ishihara K
    Langmuir; 2013 Aug; 29(34):10752-8. PubMed ID: 23898820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of molecular brushes with polyelectrolyte backbones onto oppositely charged surfaces: a self-consistent field theory.
    Feuz L; Leermakers FA; Textor M; Borisov O
    Langmuir; 2008 Jul; 24(14):7232-44. PubMed ID: 18558731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antifouling and pH-Responsive Poly(Carboxybetaine)-Based Nanoparticles for Tumor Cell Targeting.
    Ding F; Yang S; Gao Z; Guo J; Zhang P; Qiu X; Li Q; Dong M; Hao J; Yu Q; Cui J
    Front Chem; 2019; 7():770. PubMed ID: 31824916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lithium ion-imprinted polymers with hydrophilic PHEMA polymer brushes: The role of grafting density in anti-interference and anti-blockage in wastewater.
    Luo X; Zhong W; Luo J; Yang L; Long J; Guo B; Luo S
    J Colloid Interface Sci; 2017 Apr; 492():146-156. PubMed ID: 28086117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antifouling Surfaces Based on Fluorine-Containing Asymmetric Polymer Brushes: Effect of Chain Length of Fluorinated Side Chain.
    Sun X; Wu C; Hu J; Huang X; Lu G; Feng C
    Langmuir; 2019 Feb; 35(5):1235-1241. PubMed ID: 30558426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-biofouling property of well-defined concentrated polymer brushes.
    Yoshikawa C; Qiu J; Huang CF; Shimizu Y; Suzuki J; van den Bosch E
    Colloids Surf B Biointerfaces; 2015 Mar; 127():213-20. PubMed ID: 25679494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between Acrylate/Methacrylate Biomaterials and Organic Foulants Evaluated by Molecular Dynamics Simulations of Simplified Binary Mixtures.
    Nagumo R; Matsuoka T; Iwata S
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3709-3717. PubMed ID: 34328711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward Effective and Adsorption-Based Antifouling Zipper Brushes: Effect of pH, Salt, and Polymer Design.
    Maan AMC; Hofman AH; Pelras T; Ruhof IM; Kamperman M; de Vos WM
    ACS Appl Polym Mater; 2023 Oct; 5(10):7968-7981. PubMed ID: 37854302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature Dependence of the Surface and Volume Hydrophilicity of Hydrophilic Polymer Brushes.
    Zhuang P; Dirani A; Glinel K; Jonas AM
    Langmuir; 2016 Apr; 32(14):3433-44. PubMed ID: 27003634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale Characteristics and Antimicrobial Properties of (SI-ATRP)-Seeded Polymer Brush Surfaces.
    Oh YJ; Khan ES; Campo AD; Hinterdorfer P; Li B
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):29312-29319. PubMed ID: 31259525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and antifouling properties of 2-(meth-acryloyloxy)ethyl cholinephosphate based polymers modified surface with different molecular architectures by ATRP.
    Jiang Y; Su Y; Zhao L; Meng F; Wang Q; Ding C; Luo J; Li J
    Colloids Surf B Biointerfaces; 2017 Aug; 156():87-94. PubMed ID: 28527361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.