BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37672886)

  • 1. Assessment of asphaltene and resin fractions in crude oil using laser-induced fluorescence spectroscopy based on modified Beer-Lambert (LIFS-MBL).
    Ahmadinouri F; Parvin P; Rabbani AR
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jan; 304():123314. PubMed ID: 37672886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Standardized High-Performance Liquid Chromatography to Replace Conventional Methods for Determination of Saturate, Aromatic, Resin, and Asphaltene (SARA) Fractions.
    Karevan A; Zirrahi M; Hassanzadeh H
    ACS Omega; 2022 Jun; 7(22):18897-18903. PubMed ID: 35694500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorption and distribution of asphaltene, resin, aromatic and saturate fractions of heavy crude oil on quartz surface: molecular dynamic simulation.
    Wu G; He L; Chen D
    Chemosphere; 2013 Sep; 92(11):1465-71. PubMed ID: 23632245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser-induced fluorescence spectroscopy of plant-based drugs: Opium and hashish provoking at 405 nm.
    Shamsi E; Parvin P; Ahmadinouri F; Khazai S
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 302():123055. PubMed ID: 37390713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The comparison of naturally weathered oil and artificially photo-degraded oil at the molecular level by a combination of SARA fractionation and FT-ICR MS.
    Islam A; Cho Y; Yim UH; Shim WJ; Kim YH; Kim S
    J Hazard Mater; 2013 Dec; 263 Pt 2():404-11. PubMed ID: 24231315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on the Hydroconversion Law of Coal-Based Heavy Fractions with Different Catalyst Contents Based on an Improved Separation Method.
    Wang Y; Tian F; Zhu Y; Cui L; Fan X; Du C; Wang F; Zheng H; Yang Y; Li D
    ACS Omega; 2023 Jun; 8(25):22440-22452. PubMed ID: 37396277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asphaltene Remediation and Improved Oil Recovery by Advanced Solvent Deasphalting Technology.
    Alkafeef SF; Al-Marri SS
    ACS Omega; 2023 Jul; 8(29):26619-26627. PubMed ID: 37521633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and matching of oil samples using fluorescence spectroscopy and parallel factor analysis.
    Christensen JH; Hansen AB; Mortensen J; Andersen O
    Anal Chem; 2005 Apr; 77(7):2210-7. PubMed ID: 15801755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Handheld UV fluorescence spectrophotometer device for the classification and analysis of petroleum oil samples.
    Bills MV; Loh A; Sosnowski K; Nguyen BT; Ha SY; Yim UH; Yoon JY
    Biosens Bioelectron; 2020 Jul; 159():112193. PubMed ID: 32364941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of hydrogen sulfide during the thermal enhanced oil recovery process under superheated steam conditions.
    Ma Q; Yang Z; Zhang L; Lin R; Wang X
    RSC Adv; 2019 Oct; 9(58):33990-33996. PubMed ID: 35528881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward molecular characterization of asphaltene from different origins under different conditions by means of FT-IR spectroscopy.
    Zojaji I; Esfandiarian A; Taheri-Shakib J
    Adv Colloid Interface Sci; 2021 Mar; 289():102314. PubMed ID: 33561569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Asphaltene Aggregation in Model Heptane-Toluene Mixtures on Stability of Water-in-Oil Emulsions.
    McLean JD; Kilpatrick PK
    J Colloid Interface Sci; 1997 Dec; 196(1):23-34. PubMed ID: 9441646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradation of asphaltene and petroleum compounds by a highly potent Daedaleopsis sp.
    Pourfakhraei E; Badraghi J; Mamashli F; Nazari M; Saboury AA
    J Basic Microbiol; 2018 Jul; 58(7):609-622. PubMed ID: 29775208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Characterization of Nonvolatile Fractions of Algerian Petroleum with High-Resolution Mass Spectrometry.
    Saad F; Bounaceur B; Daaou M; Avilés-Moreno JR; Martínez-Haya B
    Energy Fuels; 2021 May; 35(10):8699-8710. PubMed ID: 36439938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Study on components in Shengli viscous crude oil by FTIR and UV-Vis spectroscopy].
    Guan RL; Zhu H
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Nov; 27(11):2270-4. PubMed ID: 18260411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Nitrogen-Containing Polycyclic Aromatic Heterocycles in Crude Oils and Refined Petroleum Products.
    Zhang G; Yang C; Serhan M; Koivu G; Yang Z; Hollebone B; Lambert P; Brown CE
    Adv Mar Biol; 2018; 81():59-96. PubMed ID: 30471659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards in situ fluorescence spectroscopy and microscopy investigations of asphaltene precipitation kinetics.
    Franco JC; Gonçalves G; Souza MS; Rosa SB; Thiegue LM; Atvars TD; Rosa PT; Nome RA
    Opt Express; 2013 Dec; 21(25):30874-85. PubMed ID: 24514660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the Carbonyl Functionality of a Petroleum Resin and Asphaltene through Oximation and Schiff Base Formation in Conjunction with N-15 NMR.
    Thorn KA; Cox LG
    PLoS One; 2015; 10(11):e0142452. PubMed ID: 26556054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of asphaltene by lipopeptide-biosurfactant producing hydrocarbonoclastic, crude oil degrading Bacillus spp.
    Das S; Das N; Choure K; Pandey P
    Bioresour Technol; 2023 Aug; 382():129198. PubMed ID: 37201870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal Capacities of Polycyclic Aromatic Hydrocarbons (PAHs) by a Newly Isolated Strain from Oilfield Produced Water.
    Qi YB; Wang CY; Lv CY; Lun ZM; Zheng CG
    Int J Environ Res Public Health; 2017 Feb; 14(2):. PubMed ID: 28241412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.