These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 3767349)

  • 1. Chemostat enrichment and isolation of Hyphomicrobium EG. A dimethyl-sulphide oxidizing methylotroph and reevaluation of Thiobacillus MS1.
    Suylen GM; Kuenen JG
    Antonie Van Leeuwenhoek; 1986; 52(4):281-93. PubMed ID: 3767349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth kinetics of Hyphomicrobium and Thiobacillus spp. in mixed cultures degrading dimethyl sulfide and methanol.
    Hayes AC; Liss SN; Allen DG
    Appl Environ Microbiol; 2010 Aug; 76(16):5423-31. PubMed ID: 20562269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dimethyl sulphoxide reduction by micro-organisms.
    Zinder SH; Brock TD
    J Gen Microbiol; 1978 Apr; 105(2):335-42. PubMed ID: 347031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The redox potential for dimethyl sulphoxide reduction to dimethyl sulphide: evaluation and biochemical implications.
    Wood PM
    FEBS Lett; 1981 Feb; 124(1):11-4. PubMed ID: 7215550
    [No Abstract]   [Full Text] [Related]  

  • 5. Potentialities of coupling biological processes (biotrickler/biofilter) for the degradation of a mixture of sulphur compounds.
    Malhautier L; Soupramanien A; Bayle S; Rocher J; Fanlo JL
    Appl Microbiol Biotechnol; 2015 Jan; 99(1):89-96. PubMed ID: 24898634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance and microbial analysis of defined and non-defined inocula for the removal of dimethyl sulfide in a biotrickling filter.
    Sercu B; Boon N; Beken SV; Verstraete W; Van Langenhove H
    Biotechnol Bioeng; 2007 Mar; 96(4):661-72. PubMed ID: 16921530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dimethyl sulfide biofiltration using immobilized Hyphomicrobium VS and Thiobacillus thioparus TK-m in sugarcane bagasse.
    Treto Fernández H; Rodríguez Rico I; Jover de la Prida J; Van Langenhove H
    Environ Technol; 2013; 34(1-4):257-62. PubMed ID: 23530338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thiobacillus acidophilus: a study of its presence in Thiobacillus ferrooxidans cultures.
    Arkesteyn GJ; de Bont JA
    Can J Microbiol; 1980 Sep; 26(9):1057-65. PubMed ID: 7459720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dimethylsulfone as a growth substrate for novel methylotrophic species of Hyphomicrobium and Arthrobacter.
    Borodina E; Kelly DP; Rainey FA; Ward-Rainey NL; Wood AP
    Arch Microbiol; 2000; 173(5-6):425-37. PubMed ID: 10896224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the kinetics of thiosulfate oxidation by three iron-sulfur oxidizers.
    Bounds HC; Colmer AR
    Can J Microbiol; 1972 Jun; 18(6):735-40. PubMed ID: 4556098
    [No Abstract]   [Full Text] [Related]  

  • 11. Effects of organic compounds on growth of chemostat cultures of Thiomicrospira pelophila, Thiobacillus thioparus and Thiobacillus neapolitanus.
    Kuenen JG; Veldkamp H
    Arch Mikrobiol; 1973 Dec; 94(2):173-90. PubMed ID: 4591719
    [No Abstract]   [Full Text] [Related]  

  • 12. Genomic features of uncultured methylotrophs in activated-sludge microbiomes grown under different enrichment procedures.
    Fujinawa K; Asai Y; Miyahara M; Kouzuma A; Abe T; Watanabe K
    Sci Rep; 2016 May; 6():26650. PubMed ID: 27221669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linking TFT-LCD wastewater treatment performance to microbial population abundance of Hyphomicrobium and Thiobacillus spp.
    Fukushima T; Whang LM; Chen PC; Putri DW; Chang MY; Wu YJ; Lee YC
    Bioresour Technol; 2013 Aug; 141():131-7. PubMed ID: 23628318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of thiosulphate and other inhibitors of autotrophic nitrification on heterotrophic nitrifiers.
    Robertson LA; Cornelisse R; Zeng R; Kuenen JG
    Antonie Van Leeuwenhoek; 1989 Nov; 56(4):301-9. PubMed ID: 2515797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics and energetics of reduced sulfur oxidation by chemostat cultures of Thiobacillus ferrooxidans.
    Hazeu W; Bijleveld W; Grotenhuis JT; Kakes E; Kuenen JG
    Antonie Van Leeuwenhoek; 1986; 52(6):507-18. PubMed ID: 3813523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dimethyl sulphoxide reduction with reduced sulphur compounds as electron donors by anoxygenic phototrophic bacteria.
    Vogt C; Rabenstein A; Rethmeier J; Fischer U
    Microbiology (Reading); 1997 Mar; 143(3):767-773. PubMed ID: 33711868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergy effects of Methylomonas koyamae and Hyphomicrobium methylovorum under methanethiol stress.
    Zhang X; Li HJ; Jiang L; Wang J; He R
    Appl Microbiol Biotechnol; 2023 May; 107(9):3099-3111. PubMed ID: 36933079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiology and taxonomy of thiobacillus strain TJ330, which oxidizes carbon disulphide (CS2).
    Hartikainen T; Ruuskanen J; Räty K; Von Wright A; Martikainen PJ
    J Appl Microbiol; 2000 Oct; 89(4):580-6. PubMed ID: 11054160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell yield and bioenergetics of Thiomicrospira denitrificans compared with Thiobacillus denitrificans.
    Timer-ten Hoor A
    Antonie Van Leeuwenhoek; 1981; 47(3):231-43. PubMed ID: 6791590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dimethyl sulphoxide respiration in Proteus mirabilis.
    Meganathan R; Miguel L
    Microbios; 1987; 51(208-209):191-201. PubMed ID: 3316940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.