These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 37673563)
1. Personalized event prediction for Electronic Health Records. Lee JM; Hauskrecht M Artif Intell Med; 2023 Sep; 143():102620. PubMed ID: 37673563 [TBL] [Abstract][Full Text] [Related]
2. Neural Clinical Event Sequence Prediction through Personalized Online Adaptive Learning. Lee JM; Hauskrecht M Artif Intell Med Conf Artif Intell Med (2005-); 2021 Jun; 12721():175-186. PubMed ID: 34179895 [TBL] [Abstract][Full Text] [Related]
3. Marrying Medical Domain Knowledge With Deep Learning on Electronic Health Records: A Deep Visual Analytics Approach. Li R; Yin C; Yang S; Qian B; Zhang P J Med Internet Res; 2020 Sep; 22(9):e20645. PubMed ID: 32985996 [TBL] [Abstract][Full Text] [Related]
4. TEE4EHR: Transformer event encoder for better representation learning in electronic health records. Karami H; Atienza D; Ionescu A Artif Intell Med; 2024 Aug; 154():102903. PubMed ID: 38908257 [TBL] [Abstract][Full Text] [Related]
5. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477 [TBL] [Abstract][Full Text] [Related]
6. Recurrent neural network models (CovRNN) for predicting outcomes of patients with COVID-19 on admission to hospital: model development and validation using electronic health record data. Rasmy L; Nigo M; Kannadath BS; Xie Z; Mao B; Patel K; Zhou Y; Zhang W; Ross A; Xu H; Zhi D Lancet Digit Health; 2022 Jun; 4(6):e415-e425. PubMed ID: 35466079 [TBL] [Abstract][Full Text] [Related]
7. Machine learning models to detect and predict patient safety events using electronic health records: A systematic review. Deimazar G; Sheikhtaheri A Int J Med Inform; 2023 Dec; 180():105246. PubMed ID: 37837710 [TBL] [Abstract][Full Text] [Related]
8. MetaPred: Meta-Learning for Clinical Risk Prediction with Limited Patient Electronic Health Records. Zhang XS; Tang F; Dodge HH; Zhou J; Wang F KDD; 2019 Aug; 2019():2487-2495. PubMed ID: 33859865 [TBL] [Abstract][Full Text] [Related]
9. Diagnostic Prediction with Sequence-of-sets Representation Learning for Clinical Events. Zhang T; Chen M; Bui AAT Artif Intell Med Conf Artif Intell Med (2005-); 2020 Aug; 12299():348-358. PubMed ID: 34036298 [TBL] [Abstract][Full Text] [Related]
10. DeepMPM: a mortality risk prediction model using longitudinal EHR data. Yang F; Zhang J; Chen W; Lai Y; Wang Y; Zou Q BMC Bioinformatics; 2022 Oct; 23(1):423. PubMed ID: 36241976 [TBL] [Abstract][Full Text] [Related]
11. Learning Hierarchical Representations of Electronic Health Records for Clinical Outcome Prediction. Liu L; Li H; Hu Z; Shi H; Wang Z; Tang J; Zhang M AMIA Annu Symp Proc; 2019; 2019():597-606. PubMed ID: 32308854 [TBL] [Abstract][Full Text] [Related]
12. Representation learning for clinical time series prediction tasks in electronic health records. Ruan T; Lei L; Zhou Y; Zhai J; Zhang L; He P; Gao J BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 8):259. PubMed ID: 31842854 [TBL] [Abstract][Full Text] [Related]
13. Clinical Risk Prediction Models with Meta-Learning Prototypes of Patient Heterogeneity. Zhang L; Khera R; Mortazavi BJ Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083199 [TBL] [Abstract][Full Text] [Related]
14. LSTM Model for Prediction of Heart Failure in Big Data. Maragatham G; Devi S J Med Syst; 2019 Mar; 43(5):111. PubMed ID: 30888519 [TBL] [Abstract][Full Text] [Related]
15. Graph neural networks for clinical risk prediction based on electronic health records: A survey. Oss Boll H; Amirahmadi A; Ghazani MM; Morais WO; Freitas EP; Soliman A; Etminani F; Byttner S; Recamonde-Mendoza M J Biomed Inform; 2024 Mar; 151():104616. PubMed ID: 38423267 [TBL] [Abstract][Full Text] [Related]
16. Predicting post-stroke pneumonia using deep neural network approaches. Ge Y; Wang Q; Wang L; Wu H; Peng C; Wang J; Xu Y; Xiong G; Zhang Y; Yi Y Int J Med Inform; 2019 Dec; 132():103986. PubMed ID: 31629312 [TBL] [Abstract][Full Text] [Related]
17. Continuous patient state attention model for addressing irregularity in electronic health records. Chauhan VK; Thakur A; O'Donoghue O; Rohanian O; Molaei S; Clifton DA BMC Med Inform Decis Mak; 2024 May; 24(1):117. PubMed ID: 38702692 [TBL] [Abstract][Full Text] [Related]
18. Treatment effect prediction with adversarial deep learning using electronic health records. Chu J; Dong W; Wang J; He K; Huang Z BMC Med Inform Decis Mak; 2020 Dec; 20(Suppl 4):139. PubMed ID: 33317502 [TBL] [Abstract][Full Text] [Related]
19. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
20. PARSE: A personalized clinical time-series representation learning framework via abnormal offsets analysis. An Y; Cai G; Chen X; Guo L Comput Methods Programs Biomed; 2023 Dec; 242():107838. PubMed ID: 37832431 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]