BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 37674781)

  • 1. Anisotropic wood-hydrogel composites: Extending mechanical properties of wood towards soft materials' applications.
    Koch SM; Goldhahn C; Müller FJ; Yan W; Pilz-Allen C; Bidan CM; Ciabattoni B; Stricker L; Fratzl P; Keplinger T; Burgert I
    Mater Today Bio; 2023 Oct; 22():100772. PubMed ID: 37674781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delignified Wood-Polymer Interpenetrating Composites Exceeding the Rule of Mixtures.
    Frey M; Schneider L; Masania K; Keplinger T; Burgert I
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):35305-35311. PubMed ID: 31454224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Flexible and Broad-Range Mechanically Tunable All-Wood Hydrogels with Nanoscale Channels via the Hofmeister Effect for Human Motion Monitoring.
    Yan G; He S; Chen G; Ma S; Zeng A; Chen B; Yang S; Tang X; Sun Y; Xu F; Lin L; Zeng X
    Nanomicro Lett; 2022 Mar; 14(1):84. PubMed ID: 35348885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable and Flexible Wood-Gelatin Composites for Soft Actuating Systems.
    Koch SM; Dreimol CH; Goldhahn C; Maillard A; Stadler A; Künniger T; Grönquist P; Ritter M; Keplinger T; Burgert I
    ACS Sustain Chem Eng; 2024 Jun; 12(23):8662-8670. PubMed ID: 38872957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intercellular Matrix Infiltration Improves the Wet Strength of Delignified Wood Composites.
    Koch SM; Pillon M; Keplinger T; Dreimol CH; Weinkötz S; Burgert I
    ACS Appl Mater Interfaces; 2022 Jul; 14(27):31216-31224. PubMed ID: 35767702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High strength and low swelling composite hydrogels from gelatin and delignified wood.
    Wang S; Li K; Zhou Q
    Sci Rep; 2020 Oct; 10(1):17842. PubMed ID: 33082476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of High Strength Plywood from Partially Delignified Densified Wood.
    Jakob M; Stemmer G; Czabany I; Müller U; Gindl-Altmutter W
    Polymers (Basel); 2020 Aug; 12(8):. PubMed ID: 32796560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study on the tubular composite with tunable compression mechanical behavior inspired by wood cell.
    Zhao C; Ren L; Song Z; Deng L; Liu Q
    J Mech Behav Biomed Mater; 2019 Jan; 89():132-142. PubMed ID: 30268869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the Hierarchical Structure and Alignment of Wood Cellulose Fibers for Bioinspired Anisotropic Polymeric Composites.
    Pereira Oliveira Moreira RL; Simão JA; Gouveia RF; Strauss M
    ACS Appl Bio Mater; 2020 Apr; 3(4):2193-2200. PubMed ID: 35025271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Lignin Removal on the Hygroscopicity of PMMA/Wood Composites.
    Xu F; Xu L; Zheng C; Wang Y; Zhang H
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable Wood by Reversible Interlocking and Bioinspired Mechanical Gradients.
    Frey M; Biffi G; Adobes-Vidal M; Zirkelbach M; Wang Y; Tu K; Hirt AM; Masania K; Burgert I; Keplinger T
    Adv Sci (Weinh); 2019 May; 6(10):1802190. PubMed ID: 31131194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delignified and Densified Cellulose Bulk Materials with Excellent Tensile Properties for Sustainable Engineering.
    Frey M; Widner D; Segmehl JS; Casdorff K; Keplinger T; Burgert I
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):5030-5037. PubMed ID: 29373784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fire Behavior of Wood-Based Composite Materials.
    Renner JS; Mensah RA; Jiang L; Xu Q; Das O; Berto F
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34960903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Elastic Hydrated Cellulosic Materials with Durable Compressibility and Tunable Conductivity.
    Chen C; Song J; Cheng J; Pang Z; Gan W; Chen G; Kuang Y; Huang H; Ray U; Li T; Hu L
    ACS Nano; 2020 Dec; 14(12):16723-16734. PubMed ID: 32806053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermoplastic Hybrid Composites with Wood Fibers: Bond Strength of Back-Injected Structures.
    Obermeier F; Karlinger P; Schemme M; Altstädt V
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Fabrication of Fiber Reinforced Three-Dimensional Hydrogel Tissue Engineering Scaffolds.
    Jordan AM; Kim SE; Van de Voorde K; Pokorski JK; Korley LTJ
    ACS Biomater Sci Eng; 2017 Aug; 3(8):1869-1879. PubMed ID: 33429666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programmable Anisotropic Hydrogel Composites for Soft Bioelectronics.
    Fu L; Gao T; Zhao W; Hu S; Liu L; Shi Z; Huang J
    Macromol Biosci; 2022 Jun; 22(6):e2100467. PubMed ID: 35083860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Fiber Angle on the Tensile Properties of Partially Delignified and Densified Wood.
    Jakob M; Gaugeler J; Gindl-Altmutter W
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33261118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle-Inspired Highly Anisotropic, Strong, Ion-Conductive Hydrogels.
    Kong W; Wang C; Jia C; Kuang Y; Pastel G; Chen C; Chen G; He S; Huang H; Zhang J; Wang S; Hu L
    Adv Mater; 2018 Sep; 30(39):e1801934. PubMed ID: 30101467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of Epoxy Compositions by the Application of Various Fillers of Natural Origin.
    Sienkiewicz A; Czub P
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.