These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 37674886)
1. Guan T; Bian C; Ma Z Front Nutr; 2023; 10():1257172. PubMed ID: 37674886 [TBL] [Abstract][Full Text] [Related]
2. Inhibition characteristics and mechanism of tyrosinase using five citrus flavonoids: A spectroscopic and molecular dynamics simulation study. Li W; Tian H; Guo F; Wu Y J Food Biochem; 2022 Dec; 46(12):e14484. PubMed ID: 36239431 [TBL] [Abstract][Full Text] [Related]
4. Neohesperidin Dihydrochalcone versus CCl₄-Induced Hepatic Injury through Different Mechanisms: The Implication of Free Radical Scavenging and Nrf2 Activation. Su C; Xia X; Shi Q; Song X; Fu J; Xiao C; Chen H; Lu B; Sun Z; Wu S; Yang S; Li X; Ye X; Song E; Song Y J Agric Food Chem; 2015 Jun; 63(22):5468-75. PubMed ID: 25978654 [TBL] [Abstract][Full Text] [Related]
5. Therapeutic Effects of Citrus Flavonoids Neohesperidin, Hesperidin and Its Aglycone, Hesperetin on Bone Health. Ortiz AC; Fideles SOM; Reis CHB; Bellini MZ; Pereira ESBM; Pilon JPG; de Marchi MÂ; Detregiachi CRP; Flato UAP; Trazzi BFM; Pagani BT; Ponce JB; Gardizani TP; Veronez FS; Buchaim DV; Buchaim RL Biomolecules; 2022 Apr; 12(5):. PubMed ID: 35625554 [TBL] [Abstract][Full Text] [Related]
6. Antioxidant and pancreatic lipase inhibitory effects of flavonoids from different citrus peel extracts: An in vitro study. Huang R; Zhang Y; Shen S; Zhi Z; Cheng H; Chen S; Ye X Food Chem; 2020 Oct; 326():126785. PubMed ID: 32438224 [TBL] [Abstract][Full Text] [Related]
7. The Anti-Aging Potential of Neohesperidin and Its Synergistic Effects with Other Citrus Flavonoids in Extending Chronological Lifespan of Guo C; Zhang H; Guan X; Zhou Z Molecules; 2019 Nov; 24(22):. PubMed ID: 31766122 [TBL] [Abstract][Full Text] [Related]
8. Citrus Flavonoids as Promising Phytochemicals Targeting Diabetes and Related Complications: A Systematic Review of In Vitro and In Vivo Studies. Gandhi GR; Vasconcelos ABS; Wu DT; Li HB; Antony PJ; Li H; Geng F; Gurgel RQ; Narain N; Gan RY Nutrients; 2020 Sep; 12(10):. PubMed ID: 32977511 [TBL] [Abstract][Full Text] [Related]
9. Zein enhanced the digestive stability of five citrus flavonoids via different binding interaction. Li W; Zhang X; Tan S; Li X; Gu M; Tang M; Zhao X; Wu Y J Sci Food Agric; 2022 Aug; 102(11):4780-4790. PubMed ID: 35218206 [TBL] [Abstract][Full Text] [Related]
10. Ginsenoside CK targeting KEAP1-DGR/Kelch domain disrupts the binding between KEAP1 and NRF2-DLG motif to ameliorate oxidative stress damage. Cheng C; Zhang J; Liu K; Xu Y; Shen F; Han Y; Hou Y; Zhang T; Bai G Phytomedicine; 2023 Oct; 119():154992. PubMed ID: 37499433 [TBL] [Abstract][Full Text] [Related]
11. Citrus flavonoids and adhesion molecules: Potential role in the management of atherosclerosis. Ebrahimi F; Ghazimoradi MM; Fatima G; Bahramsoltani R Heliyon; 2023 Nov; 9(11):e21849. PubMed ID: 38028000 [TBL] [Abstract][Full Text] [Related]
12. Major phytochemical composition of 3 native Korean citrus varieties and bioactive activity on V79-4 cells induced by oxidative stress. Yoo KM; Hwang IK; Park JH; Moon B J Food Sci; 2009 Aug; 74(6):C462-8. PubMed ID: 19723183 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of oral carcinogenesis by citrus flavonoids. Miller EG; Peacock JJ; Bourland TC; Taylor SE; Wright JM; Patil BS; Miller EG Nutr Cancer; 2008; 60(1):69-74. PubMed ID: 18444138 [TBL] [Abstract][Full Text] [Related]
14. Ginnalin A Binds to the Subpockets of Keap1 Kelch Domain To Activate the Nrf2-Regulated Antioxidant Defense System in SH-SY5Y Cells. Zhang Z; Peng L; Fu Y; Wang W; Wang P; Zhou F ACS Chem Neurosci; 2021 Mar; 12(5):872-882. PubMed ID: 33571414 [TBL] [Abstract][Full Text] [Related]
15. Identification and molecular mechanisms of novel antioxidant peptides from two sources of eggshell membrane hydrolysates showing cytoprotection against oxidative stress: A combined in silico and in vitro study. Zhu L; Xiong H; Huang X; Guyonnet V; Ma M; Chen X; Zheng Y; Wang L; Hu G Food Res Int; 2022 Jul; 157():111266. PubMed ID: 35761579 [TBL] [Abstract][Full Text] [Related]
16. Isoflavone biochanin A, a novel nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element activator, protects against oxidative damage in HepG2 cells. Liang F; Cao W; Huang Y; Fang Y; Cheng Y; Pan S; Xu X Biofactors; 2019 Jul; 45(4):563-574. PubMed ID: 31131946 [TBL] [Abstract][Full Text] [Related]
17. Nuclear factor (erythroid-derived 2)-like 2 (NRF2) drug discovery: Biochemical toolbox to develop NRF2 activators by reversible binding of Kelch-like ECH-associated protein 1 (KEAP1). Bresciani A; Missineo A; Gallo M; Cerretani M; Fezzardi P; Tomei L; Cicero DO; Altamura S; Santoprete A; Ingenito R; Bianchi E; Pacifici R; Dominguez C; Munoz-Sanjuan I; Harper S; Toledo-Sherman L; Park LC Arch Biochem Biophys; 2017 Oct; 631():31-41. PubMed ID: 28801166 [TBL] [Abstract][Full Text] [Related]
18. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Parhiz H; Roohbakhsh A; Soltani F; Rezaee R; Iranshahi M Phytother Res; 2015 Mar; 29(3):323-31. PubMed ID: 25394264 [TBL] [Abstract][Full Text] [Related]
19. Hesperidin from Citrus seed induces human hepatocellular carcinoma HepG2 cell apoptosis via both mitochondrial and death receptor pathways. Banjerdpongchai R; Wudtiwai B; Khaw-On P; Rachakhom W; Duangnil N; Kongtawelert P Tumour Biol; 2016 Jan; 37(1):227-37. PubMed ID: 26194866 [TBL] [Abstract][Full Text] [Related]
20. Tangeretin maintains antioxidant activity by reducing CUL3 mediated NRF2 ubiquitination. Wang Y; Jin R; Chen J; Cao J; Xiao J; Li X; Sun C Food Chem; 2021 Dec; 365():130470. PubMed ID: 34237577 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]