These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 37675505)

  • 1. Multiple highly expressed phosphoenolpyruvate carboxylase genes have divergent enzyme kinetic properties in two C4 grasses.
    DiMario RJ; Kophs AN; Apalla AJA; Schnable JN; Cousins AB
    Ann Bot; 2023 Nov; 132(3):413-428. PubMed ID: 37675505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic variation in grass phosphoenolpyruvate carboxylases provides opportunity to enhance C
    DiMario RJ; Kophs AN; Pathare VS; Schnable JC; Cousins AB
    Plant J; 2021 Mar; 105(6):1677-1688. PubMed ID: 33345397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of C4 phosphoenolpyruvate carboxylase.
    Svensson P; Bläsing OE; Westhoff P
    Arch Biochem Biophys; 2003 Jun; 414(2):180-8. PubMed ID: 12781769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs.
    O'Leary B; Park J; Plaxton WC
    Biochem J; 2011 May; 436(1):15-34. PubMed ID: 21524275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the allosteric site for neutral amino acids in the maize C
    González-Segura L; Mújica-Jiménez C; Juárez-Díaz JA; Güémez-Toro R; Martinez-Castilla LP; Muñoz-Clares RA
    J Biol Chem; 2018 Jun; 293(26):9945-9957. PubMed ID: 29743237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kranz and single-cell forms of C4 plants in the subfamily Suaedoideae show kinetic C4 convergence for PEPC and Rubisco with divergent amino acid substitutions.
    Rosnow JJ; Evans MA; Kapralov MV; Cousins AB; Edwards GE; Roalson EH
    J Exp Bot; 2015 Dec; 66(22):7347-58. PubMed ID: 26417023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The importance of the strictly conserved, C-terminal glycine residue in phosphoenolpyruvate carboxylase for overall catalysis: mutagenesis and truncation of GLY-961 in the sorghum C4 leaf isoform.
    Xu W; Ahmed S; Moriyama H; Chollet R
    J Biol Chem; 2006 Jun; 281(25):17238-17245. PubMed ID: 16624802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of c4 phosphoenolpyruvate carboxylase. Genes and proteins: a case study with the genus Flaveria.
    Westhoff P; Gowik U
    Ann Bot; 2004 Jan; 93(1):13-23. PubMed ID: 14644912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular evolution of C4 phosphoenolpyruvate carboxylase in the genus Flaveria--a gradual increase from C3 to C4 characteristics.
    Engelmann S; Bläsing OE; Gowik U; Svensson P; Westhoff P
    Planta; 2003 Sep; 217(5):717-25. PubMed ID: 12811556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of C4 phosphoenolpyruvate carboxylase in Flaveria, a conserved serine residue in the carboxyl-terminal part of the enzyme is a major determinant for C4-specific characteristics.
    Bläsing OE; Westhoff P; Svensson P
    J Biol Chem; 2000 Sep; 275(36):27917-23. PubMed ID: 10871630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An engineered change in the L-malate sensitivity of a site-directed mutant of sorghum phosphoenolpyruvate carboxylase: the effect of sequential mutagenesis and S-carboxymethylation at position 8.
    Duff SM; Lepiniec L; Crétin C; Andreo CS; Condon SA; Sarath G; Vidal J; Gadal P; Chollet R
    Arch Biochem Biophys; 1993 Oct; 306(1):272-6. PubMed ID: 8215415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulatory monoubiquitination of phosphoenolpyruvate carboxylase in germinating castor oil seeds.
    Uhrig RG; She YM; Leach CA; Plaxton WC
    J Biol Chem; 2008 Oct; 283(44):29650-7. PubMed ID: 18728004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning of PEPC-1 from a C4 halophyte Suaeda aralocaspica without Kranz anatomy and its recombinant enzymatic activity in responses to abiotic stresses.
    Cheng G; Wang L; Lan H
    Enzyme Microb Technol; 2016 Feb; 83():57-67. PubMed ID: 26777251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of plant-type phosphoenolpyruvate carboxylases from rice: identification of two plant-specific regulatory regions of the allosteric enzyme.
    Muramatsu M; Suzuki R; Yamazaki T; Miyao M
    Plant Cell Physiol; 2015 Mar; 56(3):468-80. PubMed ID: 25505033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maize C4-form phosphoenolpyruvate carboxylase engineered to be functional in C3 plants: mutations for diminished sensitivity to feedback inhibitors and for increased substrate affinity.
    Endo T; Mihara Y; Furumoto T; Matsumura H; Kai Y; Izui K
    J Exp Bot; 2008; 59(7):1811-8. PubMed ID: 18408221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning, expression, and characterization of a root-form phosphoenolpyruvate carboxylase from Zea mays: comparison with the C4-form enzyme.
    Dong LY; Masuda T; Kawamura T; Hata S; Izui K
    Plant Cell Physiol; 1998 Aug; 39(8):865-73. PubMed ID: 9787461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A conserved 19-amino acid synthetic peptide from the carboxy terminus of phosphoenolpyruvate carboxylase inhibits the in vitro phosphorylation of the enzyme by the calcium-independent phosphoenolpyruvate carboxylase kinase.
    Alvarez R; García-Mauriño S; Feria AB; Vidal J; Echevarría C
    Plant Physiol; 2003 Jun; 132(2):1097-106. PubMed ID: 12805637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A single serine to alanine substitution decreases bicarbonate affinity of phosphoenolpyruvate carboxylase in C4Flaveria trinervia.
    DiMario RJ; Cousins AB
    J Exp Bot; 2019 Feb; 70(3):995-1004. PubMed ID: 30517744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular characterization of a phosphoenolpyruvate carboxylase from a thermophilic cyanobacterium, Synechococcus vulcanus with unusual allosteric properties.
    Chen LM; Omiya T; Hata S; Izui K
    Plant Cell Physiol; 2002 Feb; 43(2):159-69. PubMed ID: 11867695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Species having C4 single-cell-type photosynthesis in the Chenopodiaceae family evolved a photosynthetic phosphoenolpyruvate carboxylase like that of Kranz-type C4 species.
    Lara MV; Chuong SD; Akhani H; Andreo CS; Edwards GE
    Plant Physiol; 2006 Oct; 142(2):673-84. PubMed ID: 16920871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.