These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The Crystal Structures of the N-terminal Photosensory Core Module of Agrobacterium Phytochrome Agp1 as Parallel and Anti-parallel Dimers. Nagano S; Scheerer P; Zubow K; Michael N; Inomata K; Lamparter T; Krauß N J Biol Chem; 2016 Sep; 291(39):20674-91. PubMed ID: 27466363 [TBL] [Abstract][Full Text] [Related]
3. Intersubunit distances in full-length, dimeric, bacterial phytochrome Agp1, as measured by pulsed electron-electron double resonance (PELDOR) between different spin label positions, remain unchanged upon photoconversion. Kacprzak S; Njimona I; Renz A; Feng J; Reijerse E; Lubitz W; Krauss N; Scheerer P; Nagano S; Lamparter T; Weber S J Biol Chem; 2017 May; 292(18):7598-7606. PubMed ID: 28289094 [TBL] [Abstract][Full Text] [Related]
4. Evidence for weak interaction between phytochromes Agp1 and Agp2 from Agrobacterium fabrum. Xue P; El Kurdi A; Kohler A; Ma H; Kaeser G; Ali A; Fischer R; Krauß N; Lamparter T FEBS Lett; 2019 May; 593(9):926-941. PubMed ID: 30941759 [TBL] [Abstract][Full Text] [Related]
5. Protein conformational changes of Agrobacterium phytochrome Agp1 during chromophore assembly and photoconversion. Noack S; Michael N; Rosen R; Lamparter T Biochemistry; 2007 Apr; 46(13):4164-76. PubMed ID: 17335289 [TBL] [Abstract][Full Text] [Related]
6. Assembly of Agrobacterium phytochromes Agp1 and Agp2 with doubly locked bilin chromophores. Inomata K; Khawn H; Chen LY; Kinoshita H; Zienicke B; Molina I; Lamparter T Biochemistry; 2009 Mar; 48(12):2817-27. PubMed ID: 19253981 [TBL] [Abstract][Full Text] [Related]
7. Sterically locked synthetic bilin derivatives and phytochrome Agp1 from Agrobacterium tumefaciens form photoinsensitive Pr- and Pfr-like adducts. Inomata K; Hammam MA; Kinoshita H; Murata Y; Khawn H; Noack S; Michael N; Lamparter T J Biol Chem; 2005 Jul; 280(26):24491-7. PubMed ID: 15878872 [TBL] [Abstract][Full Text] [Related]
8. Unusual spectral properties of bacteriophytochrome Agp2 result from a deprotonation of the chromophore in the red-absorbing form Pr. Zienicke B; Molina I; Glenz R; Singer P; Ehmer D; Escobar FV; Hildebrandt P; Diller R; Lamparter T J Biol Chem; 2013 Nov; 288(44):31738-51. PubMed ID: 24036118 [TBL] [Abstract][Full Text] [Related]
9. Transient Deprotonation of the Chromophore Affects Protein Dynamics Proximal and Distal to the Linear Tetrapyrrole Chromophore in Phytochrome Cph1. Sadeghi M; Balke J; Schneider C; Nagano S; Stellmacher J; Lochnit G; Lang C; Weise C; Hughes J; Alexiev U Biochemistry; 2020 Mar; 59(9):1051-1062. PubMed ID: 32069394 [TBL] [Abstract][Full Text] [Related]
10. Temperature effects on Agrobacterium phytochrome Agp1. Njimona I; Lamparter T PLoS One; 2011; 6(10):e25977. PubMed ID: 22043299 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of the photosensory module from a PAS-less cyanobacterial phytochrome as Pr shows a mix of dark-adapted and photoactivated features. Burgie ES; Mickles AJ; Luo F; Miller MD; Vierstra RD J Biol Chem; 2024 Jul; 300(7):107369. PubMed ID: 38750792 [TBL] [Abstract][Full Text] [Related]
13. Agrobacterium phytochrome as an enzyme for the production of ZZE bilins. Lamparter T; Michael N Biochemistry; 2005 Jun; 44(23):8461-9. PubMed ID: 15938635 [TBL] [Abstract][Full Text] [Related]
14. Crystallization and preliminary X-ray crystallographic analysis of the N-terminal photosensory module of phytochrome Agp1, a biliverdin-binding photoreceptor from Agrobacterium tumefaciens. Scheerer P; Michael N; Park JH; Noack S; Förster C; Hammam MA; Inomata K; Choe HW; Lamparter T; Krauss N J Struct Biol; 2006 Jan; 153(1):97-102. PubMed ID: 16377207 [TBL] [Abstract][Full Text] [Related]
15. Light-induced conformational changes of cyanobacterial phytochrome Cph1 probed by limited proteolysis and autophosphorylation. Esteban B; Carrascal M; Abian J; Lamparter T Biochemistry; 2005 Jan; 44(2):450-61. PubMed ID: 15641769 [TBL] [Abstract][Full Text] [Related]
16. Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: photoconversion and signal transduction. Yang X; Kuk J; Moffat K Proc Natl Acad Sci U S A; 2008 Sep; 105(38):14715-20. PubMed ID: 18799746 [TBL] [Abstract][Full Text] [Related]
17. Phototransformation of the red light sensor cyanobacterial phytochrome 2 from Synechocystis species depends on its tongue motifs. Anders K; Gutt A; Gärtner W; Essen LO J Biol Chem; 2014 Sep; 289(37):25590-600. PubMed ID: 25012656 [TBL] [Abstract][Full Text] [Related]
18. Light-induced conformational changes of the chromophore and the protein in phytochromes: bacterial phytochromes as model systems. Scheerer P; Michael N; Park JH; Nagano S; Choe HW; Inomata K; Borucki B; Krauss N; Lamparter T Chemphyschem; 2010 Apr; 11(6):1090-105. PubMed ID: 20373318 [TBL] [Abstract][Full Text] [Related]
19. Assembly of synthetic locked chromophores with agrobacterium phytochromes Agp1 and Agp2. Inomata K; Noack S; Hammam MA; Khawn H; Kinoshita H; Murata Y; Michael N; Scheerer P; Krauss N; Lamparter T J Biol Chem; 2006 Sep; 281(38):28162-73. PubMed ID: 16803878 [TBL] [Abstract][Full Text] [Related]
20. Long-Distance Protonation-Conformation Coupling in Phytochrome Species. Sadeghi M; Balke J; Rafaluk-Mohr T; Alexiev U Molecules; 2022 Dec; 27(23):. PubMed ID: 36500486 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]