These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37675822)

  • 21. Assembly and microscopic characterization of DNA origami structures.
    Scheible M; Jungmann R; Simmel FC
    Adv Exp Med Biol; 2012; 733():87-96. PubMed ID: 22101715
    [TBL] [Abstract][Full Text] [Related]  

  • 22. AFM-based single-molecule observation of the conformational changes of DNA structures.
    Endo M
    Methods; 2019 Oct; 169():3-10. PubMed ID: 30978504
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interconnecting gold islands with DNA origami nanotubes.
    Ding B; Wu H; Xu W; Zhao Z; Liu Y; Yu H; Yan H
    Nano Lett; 2010 Dec; 10(12):5065-9. PubMed ID: 21070012
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The structural and electronic properties of chiral SiC nanotubes: a hybrid density functional study.
    Alfieri G; Kimoto T
    Nanotechnology; 2009 Jul; 20(28):285703. PubMed ID: 19550011
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation and atomic force microscopy (AFM) characterization of DNA scaffolds as a template for protein immobilization.
    Lee HU; Kim H; Lee YC; Lee J
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8699-702. PubMed ID: 25958587
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controlling 1D Nanostructures and Handedness by Polar Residue Chirality of Amphiphilic Peptides.
    Xu H; Qi K; Zong C; Deng J; Zhou P; Hu X; Ma X; Wang D; Wang M; Zhang J; King SM; Rogers SE; Lu JR; Yang J; Wang J
    Small; 2024 Feb; 20(5):e2304424. PubMed ID: 37726235
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanoscale positioning of individual DNA molecules by an atomic force microscope.
    Josephs EA; Ye T
    J Am Chem Soc; 2010 Aug; 132(30):10236-8. PubMed ID: 20662500
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-Speed Atomic Force Microscopy Visualization of Protein-DNA Interactions Using DNA Origami Frames.
    Willaert RG; Kasas S
    Methods Mol Biol; 2022; 2516():157-167. PubMed ID: 35922627
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Observing and Controlling the Folding Pathway of DNA Origami at the Nanoscale.
    Wah JL; David C; Rudiuk S; Baigl D; Estevez-Torres A
    ACS Nano; 2016 Feb; 10(2):1978-87. PubMed ID: 26795025
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination of the chiral indices (n,m) of carbon nanotubes by electron diffraction.
    Qin LC
    Phys Chem Chem Phys; 2007 Jan; 9(1):31-48. PubMed ID: 17164886
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The tube or the helix? This is the question: towards the fully controlled DNA-directed assembly of carbon nanotubes.
    Zuccheri G; Brucale M; Samorì B
    Small; 2005 Jun; 1(6):590-2. PubMed ID: 17193491
    [No Abstract]   [Full Text] [Related]  

  • 32. The atomic force microscopy as a lithographic tool: nanografting of DNA nanostructures for biosensing applications.
    Castronovo M; Scaini D
    Methods Mol Biol; 2011; 749():209-21. PubMed ID: 21674375
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanoscale imaging in DNA nanotechnology.
    Jungmann R; Scheible M; Simmel FC
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2012; 4(1):66-81. PubMed ID: 22114058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. AFM Imaging of Hybridization Chain Reaction Mediated Signal Transmission between Two DNA Origami Structures.
    Helmig S; Gothelf KV
    Angew Chem Int Ed Engl; 2017 Oct; 56(44):13633-13636. PubMed ID: 28868629
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of 2D DNA Nanostructures by the Coupling of Intrinsic Tile Curvature and Arm Twist.
    Jiang C; Lu B; Zhang W; Ohayon YP; Feng F; Li S; Seeman NC; Xiao SJ
    J Am Chem Soc; 2022 Apr; 144(15):6759-6769. PubMed ID: 35385657
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of atomic force microscopy as a nanotechnology tool in food science.
    Yang H; Wang Y; Lai S; An H; Li Y; Chen F
    J Food Sci; 2007 May; 72(4):R65-75. PubMed ID: 17995783
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An atomic force microscopy mode for nondestructive electromechanical studies and its application to diphenylalanine peptide nanotubes.
    Kalinin A; Atepalikhin V; Pakhomov O; Kholkin AL; Tselev A
    Ultramicroscopy; 2018 Feb; 185():49-54. PubMed ID: 29182919
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-step rapid assembly of DNA origami nanostructures for addressable nanoscale bioreactors.
    Fu Y; Zeng D; Chao J; Jin Y; Zhang Z; Liu H; Li D; Ma H; Huang Q; Gothelf KV; Fan C
    J Am Chem Soc; 2013 Jan; 135(2):696-702. PubMed ID: 23237536
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative characterization of biomolecular assemblies and interactions using atomic force microscopy.
    Yang Y; Wang H; Erie DA
    Methods; 2003 Feb; 29(2):175-87. PubMed ID: 12606223
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In-Situ Configuration Studies on Segmented DNA Origami Nanotubes.
    Zhu B; Guo J; Zhang L; Pan M; Jing X; Wang L; Liu X; Zuo X
    Chembiochem; 2019 Jun; 20(12):1508-1513. PubMed ID: 30702811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.