These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 37675926)
1. Studying the microbiome of suppressive soils against vascular wilt, caused by Fusarium oxysporum in cape gooseberry (Physalis peruviana). Bautista D; García D; Dávila L; Caro-Quintero A; Cotes AM; González A; Zuluaga AP Environ Microbiol Rep; 2023 Dec; 15(6):757-768. PubMed ID: 37675926 [TBL] [Abstract][Full Text] [Related]
2. Association analysis for disease resistance to Fusarium oxysporum in cape gooseberry (Physalis peruviana L). Osorio-Guarín JA; Enciso-Rodríguez FE; González C; Fernández-Pozo N; Mueller LA; Barrero LS BMC Genomics; 2016 Mar; 17():248. PubMed ID: 26988219 [TBL] [Abstract][Full Text] [Related]
3. Putative Novel Effector Genes Revealed by the Genomic Analysis of the Phytopathogenic Fungus Simbaqueba J; Rodríguez EA; Burbano-David D; González C; Caro-Quintero A Front Microbiol; 2020; 11():593915. PubMed ID: 33537009 [TBL] [Abstract][Full Text] [Related]
4. Controlling Fusarium wilt of cape gooseberry by microbial consortia. García D; González-Almario A; Cotes AM Lett Appl Microbiol; 2023 Jul; 76(7):. PubMed ID: 37348479 [TBL] [Abstract][Full Text] [Related]
5. Evidence for horizontal gene transfer and separation of effector recognition from effector function revealed by analysis of effector genes shared between cape gooseberry- and tomato-infecting formae speciales of Fusarium oxysporum. Simbaqueba J; Catanzariti AM; González C; Jones DA Mol Plant Pathol; 2018 Oct; 19(10):2302-2318. PubMed ID: 29786161 [TBL] [Abstract][Full Text] [Related]
6. Physiological Response of Cape Gooseberry Seedlings to Three Biological Control Agents Under Chaves-Gómez JL; Chavez-Arias CC; Cotes Prado AM; Gómez-Caro S; Restrepo-Díaz H Plant Dis; 2020 Feb; 104(2):388-397. PubMed ID: 31809256 [TBL] [Abstract][Full Text] [Related]
7. Screening of Different Cháves-Gómez JL; Becerra-Mutis LM; Chávez-Arias CC; Restrepo-Díaz H; Gómez-Caro S Front Plant Sci; 2020; 11():806. PubMed ID: 32655597 [TBL] [Abstract][Full Text] [Related]
8. Effects of Fengycins and Iturins on Moreno-Velandia CA; Ongena M; Cotes AM Phytopathology; 2021 Dec; 111(12):2227-2237. PubMed ID: 34032523 [No Abstract] [Full Text] [Related]
9. Trichoderma virens Gl006 and Bacillus velezensis Bs006: a compatible interaction controlling Fusarium wilt of cape gooseberry. Izquierdo-García LF; González-Almario A; Cotes AM; Moreno-Velandia CA Sci Rep; 2020 Apr; 10(1):6857. PubMed ID: 32321998 [TBL] [Abstract][Full Text] [Related]
10. Physiological Responses to the Foliar Application of Synthetic Resistance Elicitors in Cape Gooseberry Seedlings Infected with Chávez-Arias CC; Gómez-Caro S; Restrepo-Díaz H Plants (Basel); 2020 Feb; 9(2):. PubMed ID: 32024161 [TBL] [Abstract][Full Text] [Related]
11. Combining transcriptome analysis and GWAS for identification and validation of marker genes in the Garzón-Martínez GA; García-Arias FL; Enciso-Rodríguez FE; Soto-Suárez M; González C; Bombarely A; Barrero LS; Osorio Guarín JA PeerJ; 2021; 9():e11135. PubMed ID: 33828924 [TBL] [Abstract][Full Text] [Related]
12. Selection of antagonistic bacteria isolated from the Physalis peruviana rhizosphere against Fusarium oxysporum. Urrea R; Cabezas L; Sierra R; Cárdenas M; Restrepo S; Jiménez P J Appl Microbiol; 2011 Sep; 111(3):707-16. PubMed ID: 21714836 [TBL] [Abstract][Full Text] [Related]
13. Natural infection of cape gooseberry (Physalis peruviana) by the potyvirus Tamarillo leaf malformation virus (TaLMV). Corrales-Cabra E; Escobar AR; Valencia MH; García YG; Montoya MM; Sánchez PG Acta Virol; 2022; 66(2):174-181. PubMed ID: 35766474 [TBL] [Abstract][Full Text] [Related]
14. Deciphering Underlying Drivers of Disease Suppressiveness Against Pathogenic Ou Y; Penton CR; Geisen S; Shen Z; Sun Y; Lv N; Wang B; Ruan Y; Xiong W; Li R; Shen Q Front Microbiol; 2019; 10():2535. PubMed ID: 31781059 [TBL] [Abstract][Full Text] [Related]
15. Physiological Response of Cape Gooseberry Plants to Mendoza-Vargas LA; Villamarín-Romero WP; Cotrino-Tierradentro AS; Ramírez-Gil JG; Chávez-Arias CC; Restrepo-Díaz H; Gómez-Caro S Front Plant Sci; 2021; 12():702842. PubMed ID: 34421951 [TBL] [Abstract][Full Text] [Related]
16. Deciphering the Synergies of Reductive Soil Disinfestation Combined with Biochar and Antagonistic Microbial Inoculation in Cucumber Fusarium Wilt Suppression Through Rhizosphere Microbiota Structure. Ali A; Elrys AS; Liu L; Xia Q; Wang B; Li Y; Dan X; Iqbal M; Zhao J; Huang X; Cai Z Microb Ecol; 2023 Apr; 85(3):980-997. PubMed ID: 35948832 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of Disease Suppressiveness of Soils in Croplands by Co-Cultivation of Pathogenic Fusarium oxysporum and Indigenous Soil Microorganisms. Mitsuboshi M; Kioka Y; Noguchi K; Asakawa S Microbes Environ; 2022; 37(4):. PubMed ID: 36184470 [TBL] [Abstract][Full Text] [Related]
18. Ameliorative effects of cape gooseberry (Physalis peruviana L.) against monosodium glutamate (MSG)-induced toxicity: genetic and biochemical approach. Acar A Environ Sci Pollut Res Int; 2021 Apr; 28(14):18035-18049. PubMed ID: 33405109 [TBL] [Abstract][Full Text] [Related]
19. Optimization of the genotyping-by-sequencing SNP calling for diversity analysis in cape gooseberry (Physalis peruviana L.) and related taxa. Enciso-Rodríguez FE; Osorio-Guarín JA; Garzón-Martínez GA; Delgadillo-Duran P; Barrero LS PLoS One; 2020; 15(8):e0238383. PubMed ID: 32845934 [TBL] [Abstract][Full Text] [Related]
20. First Report of Late Blight Caused by Phytophthora infestans on Cape Gooseberry (Physalis peruviana) in Colombia. Vargas AM; Correa A; Lozano DC; González A; Bernal AJ; Restrepo S; Jiménez P Plant Dis; 2007 Apr; 91(4):464. PubMed ID: 30781206 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]